Abstract:
In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing predictive engine evaluation and replay of engine performance. An exemplary system may include, for example: means selecting a first set of one or more algorithms for a machine learning model; tuning a first group of predictive engine parameters for the machine learning model; training the machine learning model with one or more sources of data using the selected first set of one or more algorithms and the first group of tuned predictive engine parameters to generate a first predictive engine variant from the trained machine learning model; selecting a second set of one or more algorithms for a machine learning model which are different than the first set; tuning a second group of predictive engine parameters for the machine learning model which are different than the first group; training the machine learning model with the one or more sources of data using the selected second set of one or more algorithms and the second group of tuned predictive engine parameters to generate a second predictive engine variant from the trained machine learning model; performing multiple experiments using the first and second predictive engine variants; comparing results from the multiple experiments; and deploying either the first predictive engine variant or the second predictive engine variant based on the comparison of the results of the multiple experiments. Other related embodiments are disclosed.
Abstract:
In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing predictive engine evaluation and replay of engine performance. An exemplary system may include, for example: means selecting a first set of one or more algorithms for a machine learning model; tuning a first group of predictive engine parameters for the machine learning model; training the machine learning model with one or more sources of data using the selected first set of one or more algorithms and the first group of tuned predictive engine parameters to generate a first predictive engine variant from the trained machine learning model; selecting a second set of one or more algorithms for a machine learning model which are different than the first set; tuning a second group of predictive engine parameters for the machine learning model which are different than the first group; training the machine learning model with the one or more sources of data using the selected second set of one or more algorithms and the second group of tuned predictive engine parameters to generate a second predictive engine variant from the trained machine learning model; performing multiple experiments using the first and second predictive engine variants; comparing results from the multiple experiments; and deploying either the first predictive engine variant or the second predictive engine variant based on the comparison of the results of the multiple experiments. Other related embodiments are disclosed.
Abstract:
Disclosed are methods and systems of tracking the deployment of a predictive engine for machine learning, including steps to deploy an engine variant of the predictive engine based on an engine parameter set, wherein the engine parameter set identifies at least one data source and at least one algorithm; receive one or more queries to the deployed engine variant from one or more end-user devices, and in response, generate predicted results; receive one or more actual results corresponding to the predicted results; associate the queries, the predicted results, and the actual results with a replay tag, and record them with the corresponding deployed engine variant.