摘要:
In a method of controlling a process in which the particle size of a material is reduced by passing the material through a nip between rollers at least one operational figure, such as the motor current, of at least one motor associated with at least one roller is continuously measured and the nip is adjusted by controlling the operational figure so as to match a target operational figure. A machine for reducing the particle size of a material by passing the material through a nip between rollers has a device for measuring at least one operational figure, such as the motor current, of at least one motor associated with at least one roller and a device for adjusting the nip on the basis of the measured operational figure matching a target operational figure. A method of calibrating a machine for reducing the particle size of a material by passing the material through a nip between the rollers has the step of measuring at least one operational figure, such as the motor current, associated with a desired particle size and/or mass consistency and the step of setting the operational figure associated with a desired particle size and/or mass consistency as a target operational figure.
摘要:
In a method of controlling a process in which the particle size of a material is reduced by passing the material through a nip between rollers at least one operational figure, such as the motor current, of at least one motor associated with at least one roller is continuously measured and the nip is adjusted by controlling the operational figure so as to match a target operational figure. A machine for reducing the particle size of a material by passing the material through a nip between rollers has a device for measuring at least one operational figure, such as the motor current, of at least one motor associated with at least one roller and a device for adjusting the nip on the basis of the measured operational figure matching a target operational figure. A method of calibrating a machine for reducing the particle size of a material by passing the material through a nip between the rollers has the step of measuring at least one operational figure, such as the motor current, associated with a desired particle size and/or mass consistency and the step of setting the operational figure associated with a desired particle size and/or mass consistency as a target operational figure.
摘要:
The application relates to a device for mixing and kneading masses (1), in particular chocolate masses, and to a method for mixing and kneading masses, in particular chocolate masses. The device comprises a kettle (2) having an inner wall (3), which at least partially emulates the outer surface of a rotational body, and a shaft (11) and at least one tool (10, 13) fastened thereto. At least one, in particular planar, deflector surface (8) is arranged in the kettle (2), the surface extending in the axial direction.
摘要:
A device for processing a product mass, including a container for receiving the product mass, at least one product mass processing tool in the container, which is provided to act on the product mass, and at least one sensor means having a dielectric sensor, wherein the sensor means is arranged and formed in such a way that dielectric properties of the product mass can be detected continuously or at least temporarily by means of the dielectric sensor in an environment of the dielectric sensor. The invention further relates to a method for processing a product mass, in particular by means of a device of this type.
摘要:
Proposed is a self-optimizing, adaptive industrial chocolate production system (1), and method thereof. The system comprising a chocolate mass processing line (11) with at least dosing means (2), one or more mixers (3), one or more refiners (4), one or more conches (5), and liquefying and tempering means (6). Appropriate inter-dependent operational parameters of the various devices (2/3/4/5/6) are measured by real-time measuring devices and transmitted to a controller device 12. The measured inter-dependent operational parameters are mutually optimized and dynamically adjusted providing an optimal operation at least in terms of the characteristics of the end chocolate mass 7 and/or throughputs of the chocolate production line 11 and/or other operation conditions as energy consumption.