Utilizing a two-stream encoder neural network to generate composite digital images

    公开(公告)号:US11568544B2

    公开(公告)日:2023-01-31

    申请号:US17483280

    申请日:2021-09-23

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to utilizing a neural network having a two-stream encoder architecture to accurately generate composite digital images that realistically portray a foreground object from one digital image against a scene from another digital image. For example, the disclosed systems can utilize a foreground encoder of the neural network to identify features from a foreground image and further utilize a background encoder to identify features from a background image. The disclosed systems can then utilize a decoder to fuse the features together and generate a composite digital image. The disclosed systems can train the neural network utilizing an easy-to-hard data augmentation scheme implemented via self-teaching. The disclosed systems can further incorporate the neural network within an end-to-end framework for automation of the image composition process.

    EXPOSURE DEFECTS CLASSIFICATION OF IMAGES USING A NEURAL NETWORK

    公开(公告)号:US20230024955A1

    公开(公告)日:2023-01-26

    申请号:US17957639

    申请日:2022-09-30

    Applicant: Adobe Inc.

    Abstract: Embodiments of the present invention provide systems, methods, and computer storage media for detecting and classifying an exposure defect in an image using neural networks trained via a limited amount of labeled training images. An image may be applied to a first neural network to determine whether the images includes an exposure defect. Detected defective image may be applied to a second neural network to determine an exposure defect classification for the image. The exposure defect classification can includes severe underexposure, medium underexposure, mild underexposure, mild overexposure, medium overexposure, severe overexposure, and/or the like. The image may be presented to a user along with the exposure defect classification.

    EXTRACTING ATTRIBUTES FROM ARBITRARY DIGITAL IMAGES UTILIZING A MULTI-ATTRIBUTE CONTRASTIVE CLASSIFICATION NEURAL NETWORK

    公开(公告)号:US20220383037A1

    公开(公告)日:2022-12-01

    申请号:US17332734

    申请日:2021-05-27

    Applicant: Adobe Inc.

    Abstract: This disclosure describes one or more implementations of systems, non-transitory computer-readable media, and methods that extract multiple attributes from an object portrayed in a digital image utilizing a multi-attribute contrastive classification neural network. For example, the disclosed systems utilize a multi-attribute contrastive classification neural network that includes an embedding neural network, a localizer neural network, a multi-attention neural network, and a classifier neural network. In some cases, the disclosed systems train the multi-attribute contrastive classification neural network utilizing a multi-attribute, supervised-contrastive loss. In some embodiments, the disclosed systems generate negative attribute training labels for labeled digital images utilizing positive attribute labels that correspond to the labeled digital images.

    GENERATING DEEP HARMONIZED DIGITAL IMAGES

    公开(公告)号:US20220292654A1

    公开(公告)日:2022-09-15

    申请号:US17200338

    申请日:2021-03-12

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for accurately, efficiently, and flexibly generating harmonized digital images utilizing a self-supervised image harmonization neural network. In particular, the disclosed systems can implement, and learn parameters for, a self-supervised image harmonization neural network to extract content from one digital image (disentangled from its appearance) and appearance from another from another digital image (disentangled from its content). For example, the disclosed systems can utilize a dual data augmentation method to generate diverse triplets for parameter learning (including input digital images, reference digital images, and pseudo ground truth digital images), via cropping a digital image with perturbations using three-dimensional color lookup tables (“LUTs”). Additionally, the disclosed systems can utilize the self-supervised image harmonization neural network to generate harmonized digital images that depict content from one digital image having the appearance of another digital image.

    System for automatic object mask and hotspot tracking

    公开(公告)号:US11367199B2

    公开(公告)日:2022-06-21

    申请号:US16900483

    申请日:2020-06-12

    Applicant: ADOBE INC.

    Abstract: Systems and methods provide editing operations in a smart editing system that may generate a focal point within a mask of an object for each frame of a video segment and perform editing effects on the frames of the video segment to quickly provide users with natural video editing effects. An eye-gaze network may produce a hotspot map of predicted focal points in a video frame. These predicted focal points may then be used by a gaze-to-mask network to determine objects in the image and generate an object mask for each of the detected objects. This process may then be repeated to effectively track the trajectory of objects and object focal points in videos. Based on the determined trajectory of an object in a video clip and editing parameters, the editing engine may produce editing effects relative to an object for the video clip.

    Temporally distributed neural networks for video semantic segmentation

    公开(公告)号:US11354906B2

    公开(公告)日:2022-06-07

    申请号:US16846544

    申请日:2020-04-13

    Applicant: Adobe Inc.

    Abstract: A Video Semantic Segmentation System (VSSS) is disclosed that performs accurate and fast semantic segmentation of videos using a set of temporally distributed neural networks. The VSSS receives as input a video signal comprising a contiguous sequence of temporally-related video frames. The VSSS extracts features from the video frames in the contiguous sequence and based upon the extracted features, selects, from a set of labels, a label to be associated with each pixel of each video frame in the video signal. In certain embodiments, a set of multiple neural networks are used to extract the features to be used for video segmentation and the extraction of features is distributed among the multiple neural networks in the set. A strong feature representation representing the entirety of the features is produced for each video frame in the sequence of video frames by aggregating the output features extracted by the multiple neural networks.

Patent Agency Ranking