PANOPTICALLY GUIDED INPAINTING UTILIZING A PANOPTIC INPAINTING NEURAL NETWORK

    公开(公告)号:US20240127410A1

    公开(公告)日:2024-04-18

    申请号:US17937695

    申请日:2022-10-03

    Applicant: Adobe Inc.

    CPC classification number: G06T5/005 G06T7/11 G06T2207/20084

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for panoptically guiding digital image inpainting utilizing a panoptic inpainting neural network. In some embodiments, the disclosed systems utilize a panoptic inpainting neural network to generate an inpainted digital image according to panoptic segmentation map that defines pixel regions corresponding to different panoptic labels. In some cases, the disclosed systems train a neural network utilizing a semantic discriminator that facilitates generation of digital images that are realistic while also conforming to a semantic segmentation. The disclosed systems generate and provide a panoptic inpainting interface to facilitate user interaction for inpainting digital images. In certain embodiments, the disclosed systems iteratively update an inpainted digital image based on changes to a panoptic segmentation map.

    OBJECT CLASS INPAINTING IN DIGITAL IMAGES UTILIZING CLASS-SPECIFIC INPAINTING NEURAL NETWORKS

    公开(公告)号:US20230368339A1

    公开(公告)日:2023-11-16

    申请号:US17663317

    申请日:2022-05-13

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media that generate inpainted digital images utilizing class-specific cascaded modulation inpainting neural network. For example, the disclosed systems utilize a class-specific cascaded modulation inpainting neural network that includes cascaded modulation decoder layers to generate replacement pixels portraying a particular target object class. To illustrate, in response to user selection of a replacement region and target object class, the disclosed systems utilize a class-specific cascaded modulation inpainting neural network corresponding to the target object class to generate an inpainted digital image that portrays an instance of the target object class within the replacement region. Moreover, in one or more embodiments the disclosed systems train class-specific cascaded modulation inpainting neural networks corresponding to a variety of target object classes, such as a sky object class, a water object class, a ground object class, or a human object class.

    DIGITAL IMAGE INPAINTING UTILIZING GLOBAL AND LOCAL MODULATION LAYERS OF AN INPAINTING NEURAL NETWORK

    公开(公告)号:US20250054116A1

    公开(公告)日:2025-02-13

    申请号:US18929330

    申请日:2024-10-28

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media that generate inpainted digital images utilizing a cascaded modulation inpainting neural network. For example, the disclosed systems utilize a cascaded modulation inpainting neural network that includes cascaded modulation decoder layers. For example, in one or more decoder layers, the disclosed systems start with global code modulation that captures the global-range image structures followed by an additional modulation that refines the global predictions. Accordingly, in one or more implementations, the image inpainting system provides a mechanism to correct distorted local details. Furthermore, in one or more implementations, the image inpainting system leverages fast Fourier convolutions block within different resolution layers of the encoder architecture to expand the receptive field of the encoder and to allow the network encoder to better capture global structure.

    Digital image inpainting utilizing a cascaded modulation inpainting neural network

    公开(公告)号:US12165295B2

    公开(公告)日:2024-12-10

    申请号:US17661985

    申请日:2022-05-04

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media that generate inpainted digital images utilizing a cascaded modulation inpainting neural network. For example, the disclosed systems utilize a cascaded modulation inpainting neural network that includes cascaded modulation decoder layers. For example, in one or more decoder layers, the disclosed systems start with global code modulation that captures the global-range image structures followed by an additional modulation that refines the global predictions. Accordingly, in one or more implementations, the image inpainting system provides a mechanism to correct distorted local details. Furthermore, in one or more implementations, the image inpainting system leverages fast Fourier convolutions block within different resolution layers of the encoder architecture to expand the receptive field of the encoder and to allow the network encoder to better capture global structure.

Patent Agency Ranking