Abstract:
Methods and apparatus for describing a projection model, used by a panoramic image stitching module to generate panoramic images and for communicating the projection model to other processes. A post-processing module may access and use the projection model provided by the panoramic image stitching module to perform one or more post-processing methods on the panoramic image, rather than requiring the user to input the projection model via a user interface or requiring the post-processing module to estimate the projection model according to a mathematical analysis of the panoramic image.
Abstract:
In embodiments of optical flow with nearest neighbor field fusion, an initial motion field can be generated based on the apparent motion of objects between digital images, and the initial motion field accounts for small displacements of the object motion. Matching patches of a nearest neighbor field can also be determined for the digital images, where patches of an initial size are compared to determine the matching patches, and the nearest neighbor field accounts for large displacements of the object motion. Additionally, region patch matches can be compared and determined between the digital images, where the region patches are larger than the initial size matching patches. Optimal pixel assignments can then be determined for a fused image representation of the digital images, where the optimal pixel assignments are determined from the initial motion field, the matching patches, and the region patch matches.
Abstract:
A hierarchy machine may be configured as a clustering machine that utilizes local feature embedding to organize visual patterns into nodes that each represent one or more visual patterns. These nodes may be arranged as a hierarchy in which a node may have a parent-child relationship with one or more other nodes. The hierarchy machine may implement a node splitting and tree-learning algorithm that includes hard-splitting of nodes and soft-assignment of nodes to perform error-bounded splitting of nodes into clusters. This may enable the hierarchy machine, which may form all or part of a visual pattern recognition system, to perform large-scale visual pattern recognition, such as font recognition or facial recognition, based on a learned error-bounded tree of visual patterns.
Abstract:
In techniques for adaptive denoising with internal and external patches, example image patches taken from example images are grouped into partitions of similar patches, and a partition center patch is determined for each of the partitions. An image denoising technique is applied to image patches of a noisy image to generate modified image patches, and a closest partition center patch to each of the modified image patches is determined. The image patches of the noisy image are then classified as either a common patch or a complex patch of the noisy image, where an image patch is classified based on a distance between the corresponding modified image patch and the closest partition center patch. A denoising operator can be applied to an image patch based on the classification, such as applying respective denoising operators to denoise the image patches that are classified as the common patches of the noisy image.
Abstract:
Image denoising techniques are described. In one or more implementations, a denoising result is computed by a computing device for a patch of an image. One or more partitions are located by the computing device that correspond to the denoising result and a denoising operator is obtained by the computing device that corresponds to the located one or more partitions. The obtained denoising operator is applied by the computing device to the image.
Abstract:
In embodiments of optical flow with nearest neighbor field fusion, an initial motion field can be generated based on the apparent motion of objects between digital images, and the initial motion field accounts for small displacements of the object motion. Matching patches of a nearest neighbor field can also be determined for the digital images, where patches of an initial size are compared to determine the matching patches, and the nearest neighbor field accounts for large displacements of the object motion. Additionally, region patch matches can be compared and determined between the digital images, where the region patches are larger than the initial size matching patches. Optimal pixel assignments can then be determined for a fused image representation of the digital images, where the optimal pixel assignments are determined from the initial motion field, the matching patches, and the region patch matches.
Abstract:
A method for aligning and unwarping distorted images in which lens profiles for a variety of lens and camera combinations are precomputed. Metadata stored with images is used to automatically determine if a set of component images include an excessive amount of distortion, and if so the metadata is used to determine an appropriate lens profile and initial unwarping function. The initial unwarping function is applied to the coordinates of feature points of the component images to generate substantially rectilinear feature points, which are used to estimate focal lengths, centers, and relative rotations for pairs of the images. A global nonlinear optimization is applied to the initial unwarping function(s) and the relative rotations to generate optimized unwarping functions and rotations for the component images. The optimized unwarping functions and rotations may be used to render a panoramic image.
Abstract:
A framework is provided for associating images with topics utilizing embedding learning. The framework is trained utilizing images, each having multiple visual characteristics and multiple keyword tags associated therewith. Visual features are computed from the visual characteristics utilizing a convolutional neural network and an image feature vector is generated therefrom. The keyword tags are utilized to generate a weighted word vector (or “soft topic feature vector”) for each image by calculating a weighted average of word vector representations that represent the keyword tags associated with the image. The image feature vector and the soft topic feature vector are aligned in a common embedding space and a relevancy score is computed for each of the keyword tags. Once trained, the framework can automatically tag images and a text-based search engine can rank image relevance with respect to queried keywords based upon predicted relevancy scores.
Abstract:
A combined structure and style network is described. Initially, a large set of training images, having a variety of different styles, is obtained. Each of these training images is associated with one of multiple different predetermined style categories indicating the image's style and one of multiple different predetermined semantic categories indicating objects depicted in the image. Groups of these images are formed, such that each group includes an anchor image having one of the styles, a positive-style example image having the same style as the anchor image, and a negative-style example image having a different style. Based on those groups, an image style network is generated to identify images having desired styling by recognizing visual characteristics of the different styles. The image style network is further combined, according to a unifying training technique, with an image structure network configured to recognize desired objects in images irrespective of image style.
Abstract:
A digital medium environment includes an asset processing application that performs editing of assets. A projection function is trained using pairs of actions pertaining to software edits, and assets resulting from the actions to learn a joint embedding between the actions and the assets. The projection function is used in the asset processing application to recommend software actions to create an asset, and also to recommend assets to demonstrate the effects of software actions. Recommendations are based on ranking distance measures that measure distances between actions representations and asset representations in a vector space.