摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal are described herein. Briefly stated, such methods, systems, and apparatuses operate by receiving an EM signal and an aliasing signal having an aliasing rate. The EM signal is aliased according to the aliasing signal to down-convert the EM signal. The term aliasing, as used herein, refers to both down-converting an EM signal by under-sampling the EM signal at an aliasing rate, and down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a demodulated baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
摘要:
Frequency translation and applications include, but are not limited to, frequency down-conversion, frequency up-conversion, enhanced signal reception, unified down-conversion and filtering, and combinations and applications of same.
摘要:
Methods and apparatuses for frequency selectivity and frequency translation, and applications for such methods and apparatuses, are described herein. The method includes steps of filtering an input signal, and down-converting the filtered input signal. The filtering and the down-conversion operations are performed in an integrated, unified manner. The apparatus described herein can be implemented as an integrated circuit (IC).
摘要:
A method and system is described wherein an information signal is gated at a frequency that is a sub-harmonic of the frequency of the desired output signal. In the modulation embodiments, the information signal is modulated as part of the up-conversion process. In a first modulation embodiment, one information signal is phase modulated onto the carrier signal as part of the up-conversion process. In a second modulation embodiment, two information signals are multiplied, and, as part of the up-conversion process, one signal is phase modulated onto the carrier and the other signal is amplitude modulated onto the carrier. In a third modulation embodiment, one information signal is phase modulated onto the “I” phase of the carrier signal as part of the up-conversion process and a second information signal is phase modulated onto the “Q” phase of the carrier as part of the up-conversion process.
摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal are described herein. Such methods, systems, and apparatuses operate by receiving an EM signal and an aliasing signal having an aliasing rate. The EM signal is aliased according to the aliasing signal to down-convert the EM signal. The term aliasing, as used herein, refers to both down-converting an EM signal by under-sampling the EM signal at an aliasing rate, and down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a emodulated baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
摘要:
Frequency translation and applications of same are described herein. Such applications include, but are not limited to, frequency down-conversion, frequency up-conversion, enhanced signal reception, unified down-conversion and filtering, and combinations and applications of same.
摘要:
Frequency translation and applications of same are described herein, including cable modem applications. Such applications include, but are not limited to, frequency down-conversion, frequency up-conversion, enhanced signal reception, unified down-conversion and filtering, and combinations and applications of same. Furthermore, QAM, QPSK, and other modulation techniques are also described.
摘要:
A universal frequency translation module (UFT) frequency translates an electromagnetic (EM) input signal by sampling the EM input signal according to a periodic control signal (also called an aliasing signal). By controlling the relative sampling time, the UFT module implements a relative phase shift during frequency translation. In other words, a relative phase shift can be introduced in the output signal by sampling the input signal at one point in time relative to another point in time. As such, the UFT module can be configured as an integrated frequency translator and phase-shifter. This includes the UFT module as an integrated down-converter and phase shifter, and the UFT module as an integrated up-converter and phase shifter. Applications of universal frequency translation and phase shifting include phased array antennas that utilize integrated frequency translation and phase shifting technology to steer the one or more main beams of the phased array antenna.
摘要:
A receiver having multi-mode and multi-band functionality and capabilities is described herein. The receiver is capable of selectively operating over a plurality of bands and channels. The receiver operates in a plurality of modes, including but not limited to a single band/channel mode, and a multiple band/channel mode. The receiver may form a portion of a transceiver. The transceiver may also include a transmitter. In an embodiment, the transceiver is a family radio service (FRS) unit, although the invention is not limited to this embodiment.
摘要:
The present invention includes a system and method for ensuring reception of a communications signal. A modulating baseband signal with desired information is accepted, and a plurality of redundant spectrums is generated. Each redundant spectrum comprises the necessary amplitude, phase, and frequency information to substantially reconstruct the modulating baseband signal. It is expected but not required that the redundant spectrums will be generated at a first location and sent to a second location over a communications medium. At the second location, the redundant spectrums are independently processed to recover a demodulating baseband signal for each of the redundant spectrums. In one embodiment, an error detection process is employed at the second location to detect and eliminate those demodulated baseband signals that have been corrupted during transmission. An error-free demodulated baseband signal is selected from the remaining demodulated baseband signals. The error-free demodulated baseband signal is representative of the modulating baseband signal sent over the communications medium.