摘要:
Techniques for sending signaling in a wireless communication system are described. Multiple feedback channels may be multiplexed such that they can share time frequency resources. Each feedback channel may be allocated a different subset of subcarriers in each of at least one tile. In one design, a subscriber station may determine time frequency resources including first and second portions of time frequency resources for first and second feedback channels, respectively. The subscriber station may send vectors of modulation symbols of a first length on the first feedback channel and/or vectors of modulation symbols of a second length on the second feedback channel. A base station may receive the first and second feedback channels and may perform detection on vectors of received symbols for each feedback channel to recover the signaling sent on that feedback channel.
摘要:
Systems and methodologies are described that provide techniques for performing adjustments for delta-based power control and interference management in a wireless communication system. A terminal can utilize one or more delta-based power control techniques described herein upon engaging in a reverse link transmission after a predetermined period of silence or after receiving indications of interference from neighboring access points. A delta value can be computed through open-loop projection, based on which transmission resources such as bandwidth and/or transmit power can be increased or decreased to manage interference caused by the terminal. A delta value, other feedback from the terminal, and/or indications of interference caused by the terminal can also be communicated as feedback to a serving access point to allow the access point to assign transmission resources for the terminal.
摘要:
System(s) and method(s) that facilitate assignment mismatch recovery are provided. A projected level of resources required to satisfy one or more communication constraints (e.g., inter-cell and intra-cell interference) is generated. The projected resources are contrasted with scheduled resources and a determination is made as to whether a mismatch between assigned and projected resources exists. A mismatch is recovered through an adaptive response that feeds back magnitudes for the communication resources which are compatible with the communication constraints.
摘要:
Systems and methodologies are described that facilitate broadcasting an interference level and adjusting transmit power corresponding to a reverse link in accordance with the interference level. An interference indication can be broadcasted on a broadcast channel in a wireless communication system. In response to the broadcast, mobile devices can adjust transmit power on the reverse link based upon considerations of the interference level. Further, mobile devices can evaluate an initial set point of a transmit power level during periods of inactivity.
摘要:
In the method for selecting a channel rate, link quality between the serving portion of the network and a mobile station is determined from at least one signal strength measurement. A channel rate is then selected based on the determined link quality. Also, a physical channel is assigned to the mobile station on a prioritized basis with respect to the selected channel rate.
摘要:
Systems and methods are disclosed that facilitate dynamic reverse link rate control by an access terminal and in-band signaling of changes of the reverse link rate by the access terminal.
摘要:
An adaptive pulse position modulated CDMA scheme for use in UWB communications systems is disclosed. A stream of input bits is encoded with spreading code sequence. The spreading code sequence consists of a number of code elements that may have one of two values. Each bit is encoded into a symbol consisting of a predefined number of chips, which are transmitted during a symbol period. Next, at least one code element is associated with each chip in the symbol. Then, an encoded pulse is generated in each chip. Each encoded pulse has a value determined by multiplying the data bit with the code value associated with the particular chip. The encoded pulse is then pulse position modulated by shifting the position of the pulse to a first position or a second position within the chip depending upon the encoded value of the pulse.
摘要:
Apparatuses and methodologies are described that enhance performance in a wireless communication system using beamforming transmissions. According to one aspect, a set of transmit beams are defined that simultaneously provides for space division multiplexing, multiple-input multiple output (MIMO transmission and opportunistic beamforming. The addition of a wide beam guarantees a minimum acceptable performance for all user devices.
摘要:
Apparatuses and methodologies are described that increase system capacity in a multi-access wireless communication system. Spatial dimensions may be utilized to distinguish between multiple signals utilizing the same channel and thereby increase system capacity. Signals may be separated by applying beamforming weights based upon the spatial signature of the user device-base station pair. Grouping spatially orthogonal or disparate user devices on the same channel facilitates separation of signals and maximization of user device throughput performance. User devices may be reassigned to groups periodically or based upon changes in the spatial relationships between the user devices and the base station.
摘要:
Techniques for controlling transmit power and the amount of overlapping in a quasi-orthogonal system are described. A base station for a sector receives transmissions from terminals in that sector and neighbor sectors and determines performance metrics (e.g., overall throughput) and/or QoS metrics (e.g., minimum data rate) for the terminals in the sector. The base station updates an overlapping factor based on the performance metrics and updates a QoS power control parameter based on the QoS metrics. The overlapping factor indicates the average number of overlapping transmissions sent simultaneously on each time-frequency block usable for data transmission. The QoS power control parameter ensures that the terminals in the sector can achieve minimum QoS requirements. A power control mechanism with multiple loops is used to adjust the transmit power of each terminal. The overlapping factor and QoS power control parameter are updated by two of the loops.