Abstract:
A method for deriving isokinetic measurements of the moment applied by a body portion while the body portion performs a pivotal or flexing motion at a given angular velocity about an effective pivot axis. The method uses a linear dynamometer configured for performing isokinetic measurements over a predefined range of motion along a linear path. First, the linear dynamometer is deployed with its linear path substantially tangential to a circle of given radius about the effective pivot axis for measuring force applied by the body portion. The linear dynamometer is then used to measure a force profile applied by the body portion over a predefined range of motion at a predefined linear velocity. This force profile, the linear velocity and the radius are then used to derive data for the moment applied by the body portion and the corresponding angular velocity.
Abstract:
A method and device for the quantification of muscle tone, particularly the wrist, wherein non-sinusoidal and non ramp trajectories are used to drive the wrist. Equation 1 is utilized determine the stiffness, viscosity and inertial parameters. &tgr;s(t)=KH&thgr;(t)+BH&thgr;(t)+JT&thgr;(t)+&tgr;off [Eq. 1] wherein where &tgr;s is the total torque, &tgr;off is the offset torque, KH and BH are the angular stiffness and viscosity of the combined flexor and extensor muscle groups that act on the joint, JT is the combined inertia of the oscillating appendage, &thgr; is the angular displacement of the system, and θ . and θ ¨ are the velocity and acceleration. In accordance with the method, the trajectory &thgr;(t) is controlled, the torque response &tgr;(t) is measured and the stiffness, viscosity, and inertial parameters are determined using Equation 1. The method and device are particularly suitable for use on patients with spacisity.
Abstract:
A body implantable sensor for sensing pressure in an environment within internal body tissue is described. In an implementation, the sensor includes a housing, an optical waveguide and a diaphragm with a reflective surface that faces a waveguide distal end and that reflects at least a portion of the signals exiting the waveguide distal end back into the waveguide. The diaphragm is movable relative to the waveguide end. The distance between the waveguide distal end and the diaphragm reflective surface is determined by pressure forces acting on a sensing surface of the diaphragm that is opposite the reflective surface. A cover surrounds the diaphragm and protects it from impingement, but leaves the diaphragm sensing surface exposed to pressure forces. In some implementations, an attachment mechanism stabilizes the sensor when implanted in the bodily tissue.
Abstract:
There is disclosed a method and device for non-invasively sensing a physical parameter within the body of a patient by employing a magnetically-based sensing device and monitoring device. The magnetically-based sensing device has a first magnet and a second magnet which generate a combined magnet field. The first and second magnets are positioned such that a change in a physical parameter causes a change in the combined magnet field, which change is monitored by the monitoring device.
Abstract:
A testing apparatus of a physical capacity assessment system has a support base, a column extending upwardly from the base and a workstation to which load is applied by an individual being tested on the apparatus. The workstation is supported by and adjustable in a number of different planes relative to the column. Also provided are an indicator which shows positioning of the workstation and a measuring device which measures the load placed on the workstation.
Abstract:
The present invention provides for in vivo measurements of the principal strain magnitudes and directions, and maximum shear strain that occurs in a material, such as human bone, when it is loaded (or subjected to a load). In one embodiment the invention includes a capacitive delta extensometer arranged with six sensors in a three piece configuration, with each sensor of each pair spaced apart from each other by 120 degrees.
Abstract:
A tool for measuring tissue tension during joint surgery has a tissue gripping end and a measurement assembly. The tool is preferably configured as a pair of tongs, with a mechanism that fixes the tongs to grip tissue with its tissue gripping end while the measurement assembly measures the tension in, or spreading force applied on the tissue gripped therein. In use, the joint is moved through a range of motion while the tool is attached, and the measurement assembly displays changes in tissue tension due to movement of the joint. A prototype tool implemented as a pair of tongs has tissue-gripping pincer points that are held closed by a ratchet bar assembly. The ratchet bar assembly is a telescoping cross bar which moves against the restraining force of an extension spring to register the spreading force exerted on the pincer arms by the tissue under tension. An annular stop member about each pincer point limits tissue penetration, and provides a defined surface against which the tissue acts allowing precise calibration of the device.
Abstract:
A myographic measurement method for direct strength measurement of the orofacial muscles, in particular, the lip and tongue muscles. A pressure-sensitive probe is placed in engagement with the orofacial muscle being tested. The probe provides a pressure response representative of the muscle strength under test. The probe is coupled to a transducer that converts the probe's pressure response in real time to an electrical signal representative of the force exerted on the probe by the muscle under test. The probe provides a representative pressure reading continuously over a test run of prescribed duration. The electrical signal generated in the test run is sampled and analyzed in real-time to determine a characteristic maximum pressure and hence characteristic maximum muscle strength achieved over the test run. The maximum muscle strength is provided in a form that may be incorporated directly into computerized patient records. The pressure-sensitive probe is provided by a balloon probe that is pneumatically coupled to a transducer. A strength measurement is made by holding the balloon probe against the muscle to be tested and having the patient press against the balloon probe with that muscle. To assist in holding the balloon probe in position a support fixture is provided that includes an anchor member that the patient retains in the mouth, typically gripped by the teeth, and a retaining member that is fixed to the anchor member and is shaped to retain the balloon probe in position against the lip muscle under test. Two illustrative shapes of support fixtures are illustrated for making measurements of the front upper and lower lip muscles and of lateral lip muscle thrust.
Abstract:
A myographic measurement apparatus for direct strength measurement of the orofacial muscles, in particular, the lip and tongue muscles. The apparatus includes a pressure-sensitive probe that is adapted to be placed in engagement with the orofacial muscle being tested. The probe provides a pressure response representative of the muscle strength under test. The probe is coupled to a transducer that converts the probe's pressure response in real time to an electrical signal representative of the force exerted on the probe by the muscle under test. The probe provides a representative pressure reading continuously over a test run of prescribed duration. The electrical signal generated in the test run is sampled and analyzed in real-time to determine a characteristic maximum pressure and hence characteristic maximum muscle strength achieved over the test run. The maximum muscle strength is provided in a form that may be incorporated directly into computerized patient records. The pressure-sensitive probe is provided by a balloon probe that is pneumatically coupled to a transducer. A strength measurement is made by holding the balloon probe against the muscle to be tested and having the patient press against the balloon probe with that muscle. To assist in holding the balloon probe in position a support fixture is provided that includes an anchor member that the patient retains in the mouth, typically gripped by the teeth, and a retaining member that is fixed to the anchor member and is shaped to retain the balloon probe in position against the lip muscle under test. Two illustrative shapes of support fixtures are illustrated for making measurements of the front upper and lower lip muscles and of lateral lip muscle thrust.
Abstract:
An apparatus for measuring physical strength by dynamically measuring the instantaneous power of a nonrepetitive muscular force as, for example, the force exerted by a leg extension, on the basis of a power theory and, consequently, the instantaneous power generated by a dynamic, nonrepetitive multi-articular movement such as a vertical jump. The power produced by a leg extension is calculated from the maximum speed V.sub.max of the foot plate and its output time T.sub.max. An apparatus for such measurement includes a base frame; a guide section that extends in the same direction as the base frame; a foot section that slides along the guide section so that its sliding angle is variable; a measuring unit that measures sliding conditions of the foot section; a display unit that displays, visually or aurally, various data on the leg extension of the subject; and a processor means for calculating the power generated by the leg extending force.