摘要:
This invention relates to a gas powered, closed loop power generating system which generates power substantially as a result of the flow of gas through its power generating means. Gas flows through the power generating means because of a pressure drop caused by dissolving the gas in a solvent medium on the exit side of the power generating means. The solution is then separated into the solvent medium, and the gas. The gas pressure is raised and it is then fed back into the power generating means while the separated solvent medium is recycled to redissolve more exiting gas. A process for generating power is also disclosed.
摘要:
An externally cooled, absorption engine apparatus and method, the apparatus including a closed cycle system having a first fluid and a second fluid, the first fluid constituting a working fluid and having a relatively lower boiling point while the second fluid constitutes a solvent for the first fluid and has a relatively higher boiling point and a relatively high degree of absorptivity for the first fluid. The apparatus further includes a distillation column, a superheater, a mechanical expansion engine, an externally cooled absorption column, and heat exchange apparatus. The distillation column separates the first fluid or working fluid from the solvent with heat energy supplied by an external combustion source and the superheater increases the thermal energy thereof prior to passing the working fluid through the mechanical expansion engine. The mechanical expansion engine converts thermal engine in the working fluid vapor to mechanical energy. Importantly, the backpressure to the mechanical expansion engine is significantly lowered by absorbing the working fluid with solvent from the distillation column and the efficiency of the same is substantially enhanced by cooling the solvent and also by removing heat of absorption through an external coolant source.
摘要:
A liquid powered, closed loop power generating system which generates power substantially as a result of the flow of a pressurized liquid through its power generating means is disclosed. The liquid flows through the power generating means and into a dissolving means wherein it dissolves a pressurized gas to form a solution, thereby reducing the pressures of both gas and liquid. The solution is separated into gas and liquid whereby both are repressurized. The liquid then flows back to the power-generating means and the gas flows back to the dissolving means, whereby both materials are recycled. A process for generating power is also disclosed.
摘要:
A dual fluid Rankine cycle powerplant utilizes one fluid, such as water, as the working medium and another fluid, such as a glycol, ether, polyglycol ether (both alkyl and aryl) or polyphenyl as the lubricant. The lubricant is fully soluble in the working medium and has a substantially higher boiling point than the working medium. The two fluids are separated from one another prior to entering the engine by heating the mixture of the two liquids to the evaporation temperature of the working medium and then separating the vapor from the liquid lubricant. Thereafter, the vapor can be superheated to increase the thermal efficiency.
摘要:
An improved efficiency method and device for converting thermal energy into mechanical energy, and then, preferably, into electricity and/or refrigerating energy. A partially liquid stream fc0 of fluid FC is implemented; thermal energy is transferred to the stream fc0; the heated stream fc0 is sprayed to generate a fragmented stream fc1 of fluid FC. Simultaneously a partially liquid stream ft0 of fluid FT is implemented; thermal energy is transferred to the stream ft0 to generate a stream ft that may be in liquid form or a saturated liquid/vapor mixture; stream f1 is expanded in a chamber which also receives fragmented stream fc1 to form a two-phase mixed stream fc1/t whose kinetic energy is converted into mechanical energy which is optionally transformed into electrical energy or into refrigerating energy.
摘要:
A method and system enabling the efficient use of thermal energy to provide kinetic energy and/or electrical energy. The method uses at least two heat exchangers for heating the working medium, a heat engine and a condenser. The working medium consists of at least two substances. The working medium is partially condensed on the primary side of the first heat exchanger, wherein heat is transferred to the working medium flowing on the secondary side and, subsequently, further condensation heat is transferred to a cooling circuit in a condensation heat exchanger on the primary side of the condensation heat exchanger. Subsequently, the working medium is redirected to the secondary side of the first heat exchanger. A separation of gaseous fractions of the working medium takes place in the condensation heat exchanger on the primary side.