Abstract:
An image scanning apparatus includes an image scanning unit that reads an image from an original sheet by scanning an image-formed surface of the original sheet with light in a main-scanning direction and converting light reflected from the image-formed surface into electricity using a photoelectric conversion element; a shading correction unit that performs shading correction on an image signal created by reading the image from the original sheet; a white member that faces a scanning surface of the image scanning unit; and a reference-white-data creating unit that creates reference white data for the shading correction by scanning a surface of the white member using the image scanning unit; and an interval controlling unit that decreases an interval between a scanning surface of the image scanning unit and a surface of the white member when the reference-white-data creating unit creates the referential white data.
Abstract:
A multiple non-directional scanning method. A document preview scanning is carried out from one end of the document to the other. The preview image is next analyzed to provide a set of scan parameters. After setting the scan parameters, the scanner performs a backward scanning operation from the other end of the document back to the original start-up position to obtain a final scan image.
Abstract:
An image reading apparatus includes: a light source that generates light by synthesizing light from different illuminants and irradiates an irradiated object with the generated light; a reading unit that reads light irradiated by the light source and reflected by the irradiated object and generates image information in a first color space on the irradiated object; a color conversion unit that converts the image information in the first color space into image information in a second color space with a color conversion factor group; and a color conversion factor group setting unit that acquires from the reading unit the image information generated by using, as the irradiated object, a color sample formed in a color of light emitted by one of the illuminants, determines the color conversion factor group to be used, according to the acquired image information, and sets the color conversion factor group to the color conversion unit.
Abstract:
An offset adjusting device includes a sample-hold unit that sample-holds an analog image signal obtained by converting reflected light from an original into an electric signal with a photoelectric conversion device to thereby obtain a sample-hold signal; an amplifying unit that amplifies the sample-hold signal to obtain an amplified signal; an analog-digital converter that digitizes the amplified signal to obtain a digital signal; a difference detecting unit that detects a difference between a black-level detection value of the digital signal and a black-level target value; an selecting unit that selects an adjustment coefficient among a plurality of adjustment coefficients based on comparison of the difference and a reference value; and a feedback unit that subjects an offset adjustment value based on the adjustment coefficient selected by the selecting unit to feedback processing.
Abstract:
A scanning device includes a first chassis, a second chassis and a calibration mechanism. The first chassis is for scanning one side of a document. The second chassis is for scanning the other side of the document. The second chassis is movably disposed opposite the first chassis. The calibration mechanism is for calibrating the color depth of the scan image. The calibration mechanism includes a calibration sheet and an elastic member. One end of the elastic member is fixed in the scanning device. The second chassis exerts a force on the calibration sheet to generate a relative movement between the calibration sheet and the first chassis. When the second chassis ceases exerting the force, the elastic member releases a resilient force for moving the calibration sheet to a starting position. The first chassis performs dynamic calibration by the relative movement between the first chassis and the calibration sheet.
Abstract:
An image reading apparatus for reading an image on an original document by irradiating it with light and photoelectrically converting reflected light from it by an image pickup unit, including: an original document guide member positionable opposite to the image pickup unit, with a conveyance position of the original document therebetween; a white reference member that is positionable, the same as the original document guide member, and has a reference white color; an achromatic constant-density reference member that is positionable, the same as the original document guide member, and has a reference achromatic constant-density; a drive unit that moves one of the three members so as to be positioned opposite to the image pickup unit; and a control unit that controls execution of detection processings for dust detection from data obtained by moving, as described above, the achromatic constant-density reference member and the white reference member by reading them.
Abstract:
A document reading apparatus including: a first scanning section that moves in a scanning direction along a document surface, for supporting a first mirror to reflect an image of a document in a direction parallel to the scanning direction; an intermediate scanning section that moves synchronous with the first scanning section, for supporting an intermediate mirror to reflect the image of the document reflected by the first mirror in a direction opposite from an incident direction of the image; a reading section including an imaging sensor for reading the image of a scanned document and a focusing lens for focusing the image of the document reflected by the intermediate mirror on the imaging sensor; a driving wire for pulling the first scanning section in the scanning direction; a supporting pulley for supporting the driving wire at a starting side for scanning or at an ending side for scanning; a position adjustment section capable of adjusting a position of the supporting pulley in its axial direction; a control section for performing such control that the image for adjustment is read by the reading section when the first scanning section is located at a first position and at a second position in the scanning direction, and an adjustment amount of the position adjustment section is calculated based on a readout result of the image; and an output section for outputting the calculated adjustment amount.
Abstract:
An image reading apparatus having a movable image reading unit, a locking mechanism locking the image reading device, and a position sensor. The image reading unit has an engaged portion. The lock mechanism has an engaging portion that engages the engaged portion. A first detected portion changes its position in accordance with the movement of the engaging portion. The position sensor detects the image reading unit when the image reading unit is in a first position, and detects the first detected portion when the engaging portion engages with the engaged portion.
Abstract:
The present invention provides an image reading apparatus including: a document feeding unit that feeds a document along a feeding path; a read-out sensor that reads out an image from the document fed by the document feeding unit without stopping the feed; a control unit that causes the read-out sensor to stay on standby in a predetermined retracted position at a distance from the feeding path when it is not necessary to read out the image of the document, and causes the read-out sensor, when it is necessary to read out the image of the document, to move to a predetermined document reading position and to read out the image from the fed document; and an output unit that outputs the image data read out by the read-out sensor.
Abstract:
An image reading method and apparatus. A reader is mounted and reads one side of an original document being conveyed at a reading position. A contact glass includes a surface contacting the original document. A reference is disposed at a side of the contact glass opposite to the surface and movable between the reading position and a standby position. The reference includes a surface facing the reader which has a predetermined color for providing shading data used for a shading correction. A carrier moves the reference to the reading position. The reader obtains the shading data by reading the predetermined color on the surface of the reference at the reading position.