Abstract:
A device for monitoring an area of coverage on a work tool may comprise a lighting unit, a camera, and an evaluation unit. The lighting unit may be adapted to emit light rays for illuminating the area of coverage. The camera may be adapted to detect two-dimensional images of the area of coverage, and the camera may comprise receiving elements arranged linearly. The evaluation unit may be coupled to the camera to evaluate the output signals of the receiving elements to determine a distance value for each receiving element based on the light rays emitted by the lighting device and reflected back from the area of coverage. The evaluation unit may have at least one switching output coupled to the work tool to activate the work tool such that the work tool is operational only if no object is located in the area of coverage.
Abstract:
Method of correcting a bending operation performed by a press brake, the bottom beam of which contains deformation compensation cylinders, in which a calibration nomogram is pre-recorded using very short calibration pieces, this nomogram establishing a correspondence between the forces measured at the side frames and the pressures applicable to the compensation cylinders in order to keep the bottom beam substantially straight. During a subsequent bending operation, pressure values resulting from this nomogram are applied to the compensation cylinders according to the forces measured at the side frames. A bottom dead centre is recalculated by taking account of the deformation of the top beam, the deformation of the side frames, the actual length and thickness of the piece, and the spring effect.
Abstract:
A method of making a face mask including the steps of providing a plurality of lengths of Grade 2, commercially pure titanium wire, having a diameter of from about 0.21 to about 0.24 inches; forming each length at room temperature to a desired bend angle by bending the member at room temperature using rotary bending apparatus to a first bend angle that is from about 1.25 to about 1.35 times greater than the desired bend angle; and welding each of the thus formed lengths to at least one other of the lengths in an ambient, oxygen containing environment.
Abstract:
A system manufactures a product by bending a sheet material includes a three-dimensional stereoscopic diagram creator that creates a three-dimensional stereoscopic diagram, including a desired bending angle and a desired flange width, based on graphic information of a product. A displayer displays a bending angle value in the vicinity of a bending angle, and/or a dimension value in the vicinity of a flange, in the created three-dimensional stereoscopic diagram. A test piece displayer displays a test piece of a material proposed for use in the product and displays the bending angle value(s) in the vicinity of the bending angle(s), and/or the dimension value(s) in the vicinity of the flange(s), of the test piece. A measuring device measures the bending angle value(s) and the dimension value(s) for the test piece bent by the bending machine. A calculator that calculates a stroke value using a difference between the desired bending angle and the measured bending angle, and/or a back gauge value using a difference between the desired flange dimension and the measured flange dimension.