Abstract:
The invention relates to a method for the continuous production of caprolactam from waste containing polyamide, comprising a) depolymerisation of the waste containing polyamide, whereby a caprolactam raw material and, where applicable, a flow containing secondary constituents or additives is obtained, and b) irradiation of the caprolactam raw material with UV radiation.
Abstract:
Process for recovering caprolactam from a solution comprising caprolactam dissolved in an organic solvent, said process comprising: a) washing the solution with water or an aqueous alkaline solution, resulting in a washed solution comprising caprolactam and organic solvent and in a washing residue, b) evaporating organic solvent from the washed solution, resulting in caprolactam product, c) optionally, hydrogenating the caprolactam product, d) optionally, evaporating water from the caprolactam product, e) distilling the caprolactam product to recover caprolactam and a distillation residue, f) extracting the distillation residue with an organic solvent in the presence of water to obtain (i) an extract comprising caprolactam dissolved in organic solvent and (ii) an aqueous effluent, and g) recycling the extract to step a) or b).
Abstract:
The invention relates to a method for separating by distillation a portion or the entirety of an azeptine derivative (III), which is selected from the group consisting of aminohexylidene imine, tetrahydroazepine, hexylhexahydroazepine and of aminohexylhexahydroazepine, out of a mixture (II) containing an azepine derivative (III) and an amine (I). The inventive method is characterized in that the distillation is carried out with a maximum bottom temperature of 150null C.
Abstract:
The present invention provides a process for the preparation of purified caprolactam comprising the steps of:(a) depolymerizing polyamide-containing carpet in the presence of steam to obtain crude caprolactam and steam;(b) removing substantially all of said water from said crude caprolactam and steam(c) distilling the resulting concentrated crude caprolactam at a pressure of less than about 8 mmHg and a temperature from about 110.degree. C. to about 145.degree. C. so as to form overheads and bottoms of the caprolactam; and(d) crystallizing the caprolactam overheads to obtain caprolactam crystals and mother liquor.The resulting purified caprolactam may then be used to make polycaprolactam which may then be used in engineered materials or spun into fiber.
Abstract:
Recovery of caprolactam and of an alkali metal carbonate from distillation residues which are obtained in the purification of caprolactam and contain caprolactam and/or oligomers and/or polymers of caprolactam and also alkali metal hydroxides by(a) melting the distillation residues, the caprolactam and/or oligomers and/or polymers of caprolactam and alkali metal hydroxides,(b) continuously removing caprolactam from the melt,(c) after removing caprolactam, cooling the melt and obtaining a residue,(d) dissolving the residue thus obtained in water and(e) subjecting the aqueous solution thus obtained to combustion with the formation of an alkali metal carbonateis described.
Abstract:
Caprolactam is purified by oxidative treatment in which mixtures which essentially contain the caprolactam to be purified and unsaturated lactams are treated with oxygen or an oxygen-containing gas mixture in an alkaline medium.
Abstract:
A method for producing high-purity caprolactam from a mixture comprising a melt of crude caprolactam and water, which comprises cooling the mixture in a crystallizer under a reduced pressure of from 1 to 22 Torr while maintaining the water concentration in the mixture at a level of from 0.5 to 10% by weight, to crystallize high-purity caprolactam, and then separating the resulting crystals.
Abstract:
Caprolactam is recovered from caprolactam distillation low boilers or high boilers or mixtures thereof by the following steps:(a) crystallizing a low or high boiler or a mixture thereof to form purified capro-lactam crystals and a mother liquor,(b) separating off the purified caprolactam crystals to leave a mother liquor,(c) recycling from 5 to 90% by weight of the mother liquor of stage (b) into stage (a) and transferring the remainder of the mother liquor into the subsequent stage (d),(d) crystallizing the remaining mother liquor portion from stage (c) to form caprolactam crystals and a mother liquor, separating off the caprolactam crystals of stage(e) (d) and recycling the same into stage (a) to leave a mother liquor,(f) recycling from 20 to 99% by weight of mother liquor of stage (e) into stage (d) and channeling out the remainder of the impurity-containing mother liquor of stage (e).
Abstract:
This invention is a method of purifying crude caprolactam. The improved method comprises taking a portion of a process stream of crude caprolactam having low boiling impurities and distilling the stream in the presence of water by fractional distillation into an overhead containing water and low boiling impurities and bottoms of caprolactam having improved purity and low water content.The improvement also comprises taking a low water content stream of crude caprolactam having low boiling impurities and adding water to the stream and distilling the stream by fractional distillation as described above.
Abstract:
Method and improved apparatus for recovering a volatile organic material, such as caprolactam, from a liquid mixture of organic and inorganic materials are disclosed. The method features the step of mixing the liquid mixture with superheated steam for 0.005 to 1.0 second to vaporize a large portion of the volatile organic material without degrading the organic materials. The steam and vaporized organic materials are then separated from the liquid mixture remaining, followed by separation of the vaporized organic material from the steam. The vaporized organic material subsequently is condensed. The improved apparatus features means for introducing superheated steam into a vaporizer feed pipe, as well as means for mixing the superheated steam with the liquid mixture in the pipe for 0.005 to 1.0 second so that a large portion of the volatile organic material is vaporized and feeds with the steam and remaining liquid mixture into the vaporizer for separation.