Abstract:
A computer-implemented method, computer program product, and computer processing system are provided for word embedding. The method includes receiving, by a processor device, a word embedding matrix. The method further includes generating, by a processor device, an average pooling vector and a max pooling vector, based on the word embedding matrix. The method also includes generating, by the processor device, a prediction by applying a Multi-Layer Perceptron (MLP) to the average pooling vector and the max pooling vector.
Abstract:
Systems and methods for processing video are provided. The method includes receiving a text-based description of active scenes and representing the text-based description as a word embedding matrix. The method includes using a text encoder implemented by neural network to output frame level textual representation and video level representation of the word embedding matrix. The method also includes generating, by a shared generator, frame by frame video based on the frame level textual representation, the video level representation and noise vectors. A frame level and a video level convolutional filter of a video discriminator are generated to classify frames and video of the frame by frame video as true or false. The method also includes training a conditional video generator that includes the text encoder, the video discriminator, and the shared generator in a generative adversarial network to convergence.
Abstract:
Systems and methods are disclosed for operating a Restricted Boltzmann Machine (RBM) by determining a corrected energy function of high-order semi-RBMs (hs-RBMs) without self-interaction; performing distributed pre-training of the hs-RBM; adjusting weights of the hs-RBM using contrastive divergence; generating predictions by Gibbs Sampling or by determining conditional probabilities with hidden units integrated out; and generating predictions.
Abstract:
A video camera is provided for video-based anomaly detection that includes at least one imaging sensor configured to capture video sequences in a workplace environment having a plurality of machines therein. The video camera further includes a processor. The processor is configured to generate one or more predictions of an impending anomaly affecting at least one item selected from the group consisting of (i) at least one of the plurality of machines and (ii) at least one operator of the at least one of the plurality of machines, using a Deep High-Order Convolutional Neural Network (DHOCNN)-based model applied to the video sequences. The DHOCNN-based model has a one-class SVM as a loss layer of the model. The processor is further configured to generate a signal for initiating an action to the at least one of the plurality of machines to mitigate expected harm to the at least one item.
Abstract:
A computer-implemented method and a system are provided for, in turn, providing driver assistance for a vehicle. The method includes forming, by a processor, a deep High-Order Long Short-Term Memory (HOLSTM)-based model by applying, to a HOLSTM, high-order interactions captured between global pattern distribution probabilities and local feature representations of an input sensor signal vector at each of a plurality of time steps. The input sensor signal vector is formed from multiple time series. Each of the multiple time series corresponds to a different one of a plurality of driving related sensors. The method further includes generating, by the processor, one or more predictions of impending dangerous conditions related to driving the vehicle based on the deep HOLSTM-based model. The method also includes informing, by an operator-perceptable warning device, an operator of the vehicle of the one or more predictions of impending dangerous conditions.
Abstract:
A network device, system, and method are provided. The network device includes a processor. The processor is configured to store a local estimate and a dual variable maintaining an accumulated subgradient for the network device. The processor is further configured to collect values of the dual variable of neighboring network devices. The processor is also configured to form a convex combination with equal weight from the collected dual variable of neighboring network devices. The processor is additionally configured to add a most recent local subgradient for the network device, scaled by a scaling factor, to the convex combination to obtain an updated dual variable. The processor is further configured to update the local estimate by projecting the updated dual variable to a primal space.
Abstract:
Systems and methods are disclosed for operating a Restricted Boltzmann Machine (RBM) by determining a corrected energy function of high-order semi-RBMs (hs-RBMs) without self-interaction; performing distributed pre-training of the hs-RBM; adjusting weights of the hs-RBM using contrastive divergence; generating predictions by Gibbs Sampling or by determining conditional probabilities with hidden units integrated out; and generating predictions.
Abstract:
Systems and methods are disclosed for operating a machine, by receiving training data from one or more sensors; training a machine learning module with the training data by: partitioning a data matrix into smaller submatrices to process in parallel and optimized for each processing node; for each submatrix, performing a greedy search for rank-one solutions; using alternating direction method of multipliers (ADMM) to ensure consistency over different data blocks; and controlling one or more actuators using live data and the learned module during operation.
Abstract:
Systems and methods are provided for identifying combinatorial feature interactions, including capturing statistical dependencies between categorical variables, with the statistical dependencies being stored in a computer readable storage medium. A model is selected based on the statistical dependencies using a neighborhood estimation strategy, with the neighborhood estimation strategy including generating sets of arbitrarily high-order feature interactions using at least one rule forest and optimizing one or more likelihood functions. A damped mean-field approach is applied to the model to obtain parameters of a Markov random field (MRF); a sparse high-order semi-restricted MRF is produced by adding a hidden layer to the MRF; indirect long-range dependencies between feature groups are modeled using the sparse high-order semi-restricted MRF; and a combinatorial dependency structure between variables is output.