Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with communication of safety messages by a device on behalf of other devices in a group. In an example, a communications device is equipped to receive attribute information from one or more UEs in a group of UEs, generate group attribute information based on the received attribute information, and broadcast the group attribute information on behalf of the group of UEs. In such an aspect, the communications device is a member of the group of UEs, and the leader of the group of UEs. In another example, a communications device is equipped to transmit, by a UE, attribute information to a leader UE of a group of UEs, and prohibit broadcasting at least a portion of the attribute information. In such an aspect, the communications device is a member of the group of UEs.
Abstract:
Methods and apparatus for reducing and/or eliminating the effect of self-interference are described. Various described methods and apparatus are well suited for use in DSRC WAVE systems in which a wireless communications device may acquire and use two DSRC channels, e.g., use one channel for reception while using another channel for transmission at the same time. A wireless communications device which is receiving a signal of interest on a first channel supports concurrent transmission on second channel, e.g., an adjacent channel. Controlled transmission timing synchronization with respect to the received signal of interest facilitates interference estimation and removal. Interference due to spillover energy from the transmission on the adjacent channel is estimated and removed from a received signal to facilitate recovery of the signal of interest.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a serving base station. The serving base station receives channel feedback from a plurality of UEs. The channel feedback is based on predetermined phase rotations used by the serving base station. The serving base station selects at least one UE of the UEs for a data transmission based on the received channel feedback. The serving base station maps at least one data stream to a set of resource blocks. The serving base station transmits the set of resource blocks to the at least one UE with a phase rotation determined based on the predetermined phase rotations.
Abstract:
Systems and methodologies are described that facilitate identifying peers based upon encoded signals during peer discovery in a peer to peer network. For example, direct signaling that partitions a time-frequency resource into a number of segments can be utilized to communicate an identifier within a peer discovery interval; thus, a particular segment selected for transmission can signal a portion of the identifier, while a remainder can be signaled based upon tones communicated within the selected segment. Moreover, a subset of symbols within the resource can be reserved (e.g., unused) to enable identifying and/or correcting timing offset. Further, signaling can be effectuated over a plurality of peer discovery intervals such that partial identifiers communicated during each of the peer discovery intervals can be linked (e.g., based upon overlapping bits and/or bloom filter information).
Abstract:
Systems and methodologies are described that facilitate identifying peers based upon encoded signals during peer discovery in a peer to peer network. For example, direct signaling that partitions a time-frequency resource into a number of segments can be utilized to communicate an identifier within a peer discovery interval; thus, a particular segment selected for transmission can signal a portion of the identifier, while a remainder can be signaled based upon tones communicated within the selected segment. Moreover, a subset of symbols within the resource can be reserved (e.g., unused) to enable identifying and/or correcting timing offset. Further, signaling can be effectuated over a plurality of peer discovery intervals such that partial identifiers communicated during each of the peer discovery intervals can be linked (e.g., based upon overlapping bits and/or bloom filter information).