Abstract:
A corona discharge (24) ignition includes an electrode (38) emitting a radio frequency electric field and providing a corona discharge (24) to ignite a combustible mixture. The system includes a controlled high voltage energy supply (52) providing energy to a main energy storage (28) at a main voltage. A fixed high voltage energy supply (54) provides extra energy to an extra energy storage (26) at an extra voltage, which is greater than the main voltage. While the corona discharge (24) is being provided, the energy of the main energy storage (28), but not the extra energy storage (26), is provided to the electrode (38). When the corona discharge (24) switches to arc discharge, the extra energy of the extra energy storage (26) is provided to the corona igniter (22) to enhance the arc discharge and provide reliable ignition until the corona discharge (24) is restored.
Abstract:
An electrode material that may be used in spark plugs and other ignition devices for igniting an air/fuel mixture in an engine. The electrode material has a metal ceramic composite structure and includes a particulate component embedded or dispersed within a matrix component such that the electrode material has a multi-phase microstructure. In an exemplary embodiment, the matrix component includes platinum (Pt) and one or more additive metals like nickel (Ni) or palladium (Pd), and the particulate component includes an electrically conductive ceramic, such as titanium diboride (TiB2). A liquid phase or a solid phase sintering process may be used, depending on the particular constituency of the electrode material.
Abstract:
A spark plug (20) for igniting a mixture of fuel and air of an internal combustion engine comprises a center electrode (22) and a ground electrode (24). At least one of the electrodes (22, 24) includes a body portion (28, 30) formed of thermally conductive material and a firing tip (32, 34) disposed on the body portion (28, 30). The firing tip (32, 34) includes a ceramic material, providing an exposed firing surface (36, 38). The ceramic material is an electrically conductive, monolithic ceramic material. Examples of preferred ceramic materials include titanium diboride, silicon carbide, ternary carbide, and ternary nitride. The ceramic material can also include oxides, borides, nitrides, carbides, silicides, or MAX phases.
Abstract:
A spark ignition device, ground electrode therefor, and methods of construction thereof are provided. The spark ignition device includes a generally annular ceramic insulator with a metal shell surrounding at least a portion of the ceramic insulator. A center electrode is received at least in part in the ceramic insulator and a ground electrode extends from the shell to a free end portion. A firing tip is attached adjacent the free end portion of the ground electrode to provide a spark gap between the center electrode and the firing tip. The free end portion is at least partially bounded by at least one “as laser cut” peripheral side extending adjacent the firing tip.
Abstract:
An igniter (20) includes an outer insulator (24) formed of an outer ceramic material hermetically sealed to a conductive core (26). The conductive core (26) is formed of a core ceramic material and a conductive component, such as an electrically conductive coating applied to the core ceramic material or metal particles or wires embedded in the core ceramic material. The conductive core (26) is typically sintered and disposed in the green outer insulator (24). The components are then sintered together such that the outer insulator (24) shrinks onto the conductive core (26) and the hermetic seal forms therebetween. The conductive core (26) fills the outer insulator (24), so that the conductive core (26) is disposed at an insulator nose end (34) of the outer insulator (24) and the electrical discharge (22) can be emitted from the conductive core (26), eliminating the need for a separate firing tip.
Abstract:
A spark plug includes at least one electrode having a sparking end. The sparking end is formed of a high temperature performance alloy including chromium in an amount of 10.0 weight percent to 60.0 weight percent, palladium in an amount of 0.5 weight percent to 10.0 weight percent, and a balance substantially of at least one of molybdenum and tungsten. The sparking end presents a spark contact surface, and at a temperature of at least 500° C., such as during use of the spark plug in an internal combustion engine, a layer of chromium oxide (Cr2O3) forms at said spark contact surface. The layer of Cr2O3 protects the bulk of the sparking end from the extreme conditions of the combustion chamber and prevents erosion, corrosion, and balling.
Abstract translation:火花塞包括至少一个具有火花端的电极。 火花端由包含10.0重量%至60.0重量%的铬的高温性能合金形成,钯的量为0.5重量%至10.0重量%,余量基本上至少为钼和钨的一种 。 火花端具有火花接触表面,并且在至少500℃的温度下,例如在内燃机中使用火花塞期间,在所述火花接触表面处形成氧化铬(Cr 2 O 3)层。 Cr2O3层可以防止燃烧室的极端条件下火花塞的大部分,并防止腐蚀,腐蚀和球磨。
Abstract:
A spark plug having one or more electrodes at least partially fabricated from an aluminum-containing Ni-based alloy. The alloy is a volume-stable alloy that includes a Ni3Al precipitate in a γ′-phase distributed in a Ni matrix γ-phase. The precipitate is formed in the alloy prior to the alloy being used to fabricate electrodes and thus prevents additional Ni3Al precipitate from being formed in the alloy once in service in a high-temperature environment. This, in turn, prevents a volume decrease of the alloy that may lead to an increased spark gap and spark plug malfunction. The volume-stable alloy may be made by solution treatment, quenching, and heat aging of a Ni—Cr—Al—Fe alloy.
Abstract:
A spark plug, a center electrode therefore and method of construction is provided. The spark plug has a generally annular ceramic insulator extending between a terminal end and a nose end. A conductive shell surrounds at least a portion of the ceramic insulator and a ground electrode having a ground electrode sparking surface is operatively attached to the shell. An elongate center electrode has a body extending between opposite ends, wherein the body is compacted and sintered of a conductive or semi-conductive ceramic material. One of the electrode ends provides a center electrode sparking surface to provide a spark gap between the center electrode sparking surface and the ground electrode sparking surface.
Abstract:
A method of making a spark plug electrode includes several steps. One step includes providing an inner core of a ruthenium (Ru) based alloy or an iridium (Ir) based alloy. Another step includes providing an outer skin over a portion or more of the inner core in order to produce a core and skin assembly. The outer skin can be made of platinum (Pt), gold (Au), silver (Ag), nickel (Ni), or an alloy of one of these. Yet another step includes increasing the temperature of the core and skin assembly. And another step includes hot forming the core and skin assembly at the increased temperature.
Abstract:
A spark plug includes a metallic shell, an insulator, a center electrode body, a ground electrode body, and a ground electrode tip. In one embodiment, the ground electrode tip includes a non-precious metal piece and a precious metal piece attached to each other. The non-precious metal piece has a side surface attached to a free end surface of the ground electrode body.