Abstract:
The present invention discloses a touch display panel, a detecting method thereof, and a display device. The common electrode layer is divided into a plurality of independent self capacitance electrodes, and the common electrode is multiplexed as self capacitance electrodes. There is no need to provide an additional film, and it is only required to modify the pattern of the common electrode layer in the current LCD panel. Thus, the production cost is reduced, and the production efficiency is improved. Since the self capacitance electrodes are formed by dividing the common electrode layer in the above-mentioned touch display panel, a compensating electrode is further provided which is arranged in a layer different from that of the self capacitance electrodes, is insulated from the self capacitance electrodes, and at least covers a portion of a partition gap between neighboring self capacitance electrodes. A common electrode signal is applied to the compensating electrode during a display period. In this way, the common electrode signal which is applied to the compensating electrode during display can compensate the common electrode signal at partition gaps of the self capacitance, thus ensuring that liquid crystal molecules at partition gaps normally invert and that the overall display panel displays normally.
Abstract:
A sealant, a preparation method and a curing method thereof, and a display apparatus are provided. The sealant includes a viscous transparent base material and electrochromic material doped in the base material. The electrochromic material is mutually linked to form a conductive chain and can change color in the case that an electric field is applied upon the electrochromic material, to prevent light from passing through.
Abstract:
The present disclosure describes a display Q_panel, a display panel and a manufacturing method thereof, as well as a display apparatus. The display Q_panel comprises a first and a second substrate for cell assembling to pre-form a plurality of display panels. The display Q_panel is provided, between the first substrate and the second substrate, with a blocking wall at the edge region on at least one side thereof, the blocking wall being located externally to the outmost cutting line on that side where it is located, and the sealant on that side being provided internally to the blocking wall. By providing a blocking wall externally to the outmost cutting line on the display Q_panel, the blocking wall blocks the spill-out of the sealant on that side, reduces the undesirable phenomena of sealant puncture, sealant break, etc. arising from the display panels after the cutting, can respond better to the Peel-off, Bending or other tests, and improves the robustness of glass cell assembling.