Abstract:
An image forming medium includes a substrate and an imaging layer coated on or impregnated into the substrate, where the imaging layer includes a photobase generator and coupling agent. In the image forming medium, irradiation of the imaging layer causes the photobase generator to generate base that reacts with the coupling agent to produce an image.
Abstract:
The presently described embodiments comprise a system that includes a color changing medium, an erasing device using heat or long wavelength infrared light as the erasing source, a writing device that can imagewise apply a UV light to write the image on the media, and a transport to transport the media along a paper path to be seen by the erasing device and the writing device. The system could also function in an alternative way. The image could be “erased” to the all dark state using light (e.g. ultraviolet light) and then heated or illuminated using, for example, infrared light in imagewise fashion to produce the image.
Abstract:
An image forming medium includes a substrate and a mixture including a photochromic material and a solvent wherein the mixture is coated on the substrate, such that the photochromic material exhibits a reversible homogeneous-heterogeneous transition between a colorless state and a colored state in the solvent.
Abstract:
Disclosed is a method of embedding machine readable information on a substrate, including converting the information to machine readable code format and writing the machine readable code format on the substrate with at least one fluorescent marking material. Also disclosed is a system for embedding and recovering machine readable information on a substrate, including an image forming device containing at least one fluorescent marking material, wherein the image forming device receives data representative of the machine readable information, and forms an image corresponding to the data in a machine readable code format with the at least one fluorescent marking material on an image receiving substrate, and a document reading device including a radiation emitting unit that emits radiation effecting fluorescence of the at least one fluorescent marking material, and a reader that detects the data in the image on the image receiving substrate while the at least one fluorescent marking material is fluorescing.
Abstract:
An electrophoretic display device includes a multiplicity of individual reservoirs containing a display medium between conductive substrates, at least one of which is transparent, wherein the display medium includes one or more set of colored particles in a dielectric fluid and has an electrical conductivity of about 10−11 to about 10−15 S/m, and wherein the multiplicity of individual reservoirs are defined by a unitary grid whose walls segregate the reservoirs. The gird may be formed via photolithography or from a master stamp derived from a mold of the grid pattern.
Abstract translation:电泳显示装置包括多个单独的储存器,其在导电基板之间包含显示介质,其中至少一个是透明的,其中显示介质包括介电流体中的一组或多组着色颗粒,并且具有约10的电导率 -11至约10 -15 S / m,并且其中多个单独储存器由其墙壁隔离储存器的整体网格限定。 网格可以通过光刻法或来自网格图案的模具的主印章形成。
Abstract:
A cholesteric display is provided including a bistable liquid crystalline mixture contained between a first substrate and a second substrate of a liquid crystal cell, and a polymer network orthogonally oriented with respect to the substrates, thereby defining liquid crystal domains, with a dipolar dopant dissolved in the liquid crystalline mixture. A process for producing a cholesteric display is also provided.
Abstract:
An image forming medium including at least a polymer and a photochromic compound such as spiropyran embedded in the polymer, wherein spiropyran molecules of the spiropyran compound are chelated by a cation.
Abstract:
Magnetic display devices include low-density silica coated magnetic and nonmagnetic particles. In a one-particle system, low-density silica coated magnetic particles coated by a sol-gel process are used in combination with non-magnetic particles. In a two-particle system, low-density silica coated magnetic particles coated by a sol-gel process are used in combination with low-density silica coated non-magnetic particles. Display devices employing silica coated magnetic particles minimize the tendency of the magnetic particles to aggregate. Silica coated magnetic particles in a display device results in a magnetic display with improved image stability. Low-density silica coated magnetic particles in a display device allow for particles to move easily through a dispersion fluid in response to a magnetic field.
Abstract:
Compositions of encapsulated triboelectrically charged particles and methods for making them using a spinning disc process are disclosed. The methods can be used to make charged pigment particles embedded in a neutral polymer matrix. The polymer matrix keeps oppositely charged pigment particle from agglomerating. The particles can be used for electrophoretic displays.
Abstract:
Magnetic display devices include low-density silica coated magnetic and nonmagnetic particles. In a one-particle system, low-density silica coated magnetic particles coated by a sol-gel process are used in combination with non-magnetic particles. In a two-particle system, low-density silica coated magnetic particles coated by a sol-gel process are used in combination with low-density silica coated non-magnetic particles. Display devices employing silica coated magnetic particles minimize the tendency of the magnetic particles to aggregate. Silica coated magnetic particles in a display device results in a magnetic display with improved image stability. Low-density silica coated magnetic particles in a display device allow for particles to move easily through a dispersion fluid in response to a magnetic field.