Abstract:
A plasma display device. The plasma display is constructed with: a plasma display panel that displays visual images by using gas discharge; a chassis base that supports the plasma display panel; a driving board that applies a driving voltage to the plasma display panel; a connection wire connecting the driving board to an electrode included in the plasma display panel, and in which an electronic element is packaged; and a first member that adheres to the connection wire to absorb heat transmitted to the electronic element.
Abstract:
A plasma display panel includes a first substrate, on which discharge sustain electrodes are formed, and an opposing second substrate, on which address electrodes are aligned in a first direction. Barrier ribs between the substrates define a plurality of discharge cells within which phosphor layers are formed. The display electrodes have bus electrodes, forming a corresponding pair within each of the discharge cells, and extension electrodes, extending from the bus electrodes into each of the discharge cells to form an opposing pair. A pair of the display electrodes corresponding to each of the discharge cells forms a first gap and a second gap having different distances from each other between the opposing extension electrodes, and forms a third gap between the bus electrodes. The second gap is longer than the first gap, and the third gap is longer than the second gap.
Abstract:
A mobile terminal and a specific absorption rate reducer method are provided, in which a printed circuit board (PCB) is installed in a main-body, a liquid crystal display (LCD) module is installed in a sub-body, a hinge connects the main-body and the sub-body rotatively and generates a current in the opposite direction to a current generated during the operation of the mobile terminal in a calling mode, and a filter controls a frequency pass characteristic of the mobile terminal by controlling the current flowing in the hinge. Accordingly, frequency pass characteristics may be set differently according to frequency bands by controlling the current flowing in the hinge with a filter having a lumped constant circuit.
Abstract:
A method of driving a plasma display panel (PDP) and an apparatus for carrying out the method. The PDP includes address electrodes with first electrodes and second electrodes intersecting the address electrodes. Gray-scale levels being represented by combinations of sub-fields, each sub-field having a reset period, an address period, and a sustain-discharge period. The different gray scales are achieved not only by modifying the voltage waveforms in the sustain-discharge period but also by modifying the voltage waveforms in the reset period, allowing for better control over gray scales and better contrast. Different sub-fields can have different voltages applied during the reset period which affects the luminance of the image displayed. A circuit for making the above voltage waveforms is also presented.
Abstract:
A plasma display apparatus and a method of manufacturing a plasma display apparatus are provided. According to the invention, the accuracy of alignment of the plasma display apparatus is improved. A plasma display apparatus according to one embodiment of the present invention comprises a plasma display panel for producing images and a chassis to which the plasma display panel is attached. The plasma display panel comprises at least one aligning mark and is attached to a first surface of the chassis. The chassis comprises at least one aligning hole corresponding in position to the position of the aligning mark on the plasma display panel. The chassis comprises aluminum and an anti-reflective material. The anti-reflective material is present in the chassis in an amount ranging from about 12 to about 26 parts by weight per 100 parts by weight aluminum.
Abstract:
A display device comprising a display panel for displaying an image, a chassis base coupled to the display panel to support the display panel, the chassis base having at least one chassis base hole, and at least one reinforcing member formed on the chassis base such that the at least one reinforcing member covers the at least one chassis base hole.
Abstract:
A plasma display panel and a method for driving the same, wherein the method comprises detecting the frequency of a vertical synchronous signal, comparing the detected frequency with a reference frequency, and controlling the number of sustain pulses of each sub-field of a video signal according to a result of the comparison. According to the invention, damage to a plasma display panel driving circuit due to the input of an abnormal vertical synchronous signal may be prevented.
Abstract:
An exemplary plasma display panel according to one embodiment includes a first substrate and a second substrate, a barrier rib, address electrodes, a phosphor layer, display electrodes, and a first dielectric layer. The first and second substrates are disposed facing each other. The barrier rib is disposed between the first and second substrates and forms discharge cells. The address electrode is formed in one direction on the first substrate corresponding to the discharge cells. The phosphor layer is formed in each discharge cell. A display electrode is formed in a direction that crosses the address electrode on the second substrate. A first dielectric layer covers the address electrode. The first dielectric layer is formed, in the direction of the length of the address electrode, up to at least one of the edges of the first substrate.
Abstract:
The present invention relates to a display driving circuit, which includes a latch-up prevention unit, thus preventing the occurrence of latch-up. The display driving circuit according to the present invention includes first to third voltage generation units configured to receive an externally applied input voltage having a same magnitude and generate respective voltages having different magnitudes, and a latch-up prevention unit connected to the second voltage generation unit and configured to receive a lower voltage among voltages output from the second voltage generation unit and to ground the lower voltage for a preset period of time. Accordingly, the second driving voltage output from the second voltage generation unit is connected to the latch-up prevention unit, including a plurality of switching means connected to the ground, and is grounded for a preset period of time, thus preventing the occurrence of latch-up and reducing the size of the driving circuit.
Abstract:
A plasma display module with reduced driving noise and improved a heat dissipating performance. The plasma display module includes a chassis base, a plasma display panel arranged at a front portion of the chassis base, the plasma display panel being adapted to display images, a heat dissipation sheet arranged between the plasma display panel and the chassis base, the heat dissipation sheet including a plurality of pores, wherein a porosity of the heat dissipation sheet varies with distance from the plasma display panel, and a circuit unit arranged at a back portion of the chassis base to drive the plasma display. The heat dissipation sheet may be made out of three separate sheet materials, each sheet having a different porosity.