Abstract:
Apparatus and process of laser assisted drilling includes structure and method for receiving laser energy and projecting it onto an object to produce structural changes within the object. Structure and method are also provided for mechanically abrading the structurally perturbed portions of the object. By combining laser and mechanical energy, drilling is quickly and accurately performed.
Abstract:
A technique is disclosed for wound debridement in which a pulsed CO.sub.2 laser beam is caused to impinge upon exposed tissue with individual pulses sufficiently energetic to ablate a thin layer of tissue. Each pulse has a time duration short enough to cause ablation but long enough so that it does not cause atmospheric breakdown. The CO.sub.2 laser, with a wavelength in the far infrared region, is operated to produce a pulsed beam with individual pulses having an energy of about one joule per pulse or greater. The beam is focused to produce a beam diameter with a fluence of approximately ten joules per square centimeter at the tissue to be ablated and with a pulse repetition rate of approximately one hundred pulses per second and a pulse duration between one microsecond and ten microseconds. In operation, the ablation of eschar is achieved over a relatively wide range of angles of incidence without need for change of the beam parameters.
Abstract:
A pulse format for a laser system is disclosed for maximizing the energy delivered to a target immersed in an absorbing liquid. A first pulse is generated having an energy sufficient to initiate the formation of a vapor bubble in the liquid medium adjacent the end of the delivery device. A second, high energy pulse is generated after the vapor bubble initiated by the first pulse has expanded an amount sufficient to displace the liquid between the delivery device and the target. In this manner, the second pulse is delivered directly to the target and little energy is lost to the liquid medium.
Abstract:
A beam delivery apparatus, including a set of focusing mirrors (or transmissive lenses) mounted along an endoscope channel. A laser beam can be focused into an input end of the channel with a smaller F number (wider cone angle) than is possible in a conventional endoscope. As the beam propagates down the channel, it is reflected (or transmitted) a finite number of times by the focusing elements. The focusing elements act as a periscope to focus and refocus the beam as it propagates along the channel, with little loss of beam power. The invention enables delivery of the beam to the channel's distal end with a smaller F number than can be achieved using a conventional endoscope. In a preferred embodiment, a pair of reflecting strips are mounted the channel, the surface of each strip defines six focusing mirrors, and the beam undergoes a total of twelve reflections from the mirrors as it propagates down the channel. Preferably, the surface of each mirror has a curvature selected to prevent the introduction of astigmatic distortion during each beam reflection.
Abstract:
A medical system for transmitting and delivering to a tissue site multiwavelength therapeutic radiant energy along a common optical pathway. Also included is a laser catheter suitable for engaging multiple sources of laser energy and transmitting multiwavelength therapeutic laser energy along a common optical path for delivery to a worksite.
Abstract:
A technique is disclosed for wound debridement in which a pulsed CO.sub.2 laser beam is caused to impinge upon exposed tissue with individual pulses sufficiently energetic to ablate a thin layer of tissue. Each pulse has a time duration short enough to avoid deleterious heat penetration but long enough so that it does not cause atmospheric breakdown. The CO.sub.2 laser, with a wavelength in the far infrared region, is operated to produce a pulsed beam with individual pulses having an energy of about one joule per pulse or greater. The beam is focused to produce a beam diameter with a fluence of approximately ten joules per square centimeter at the tissue to be ablated and with a pulse repetition rate of approximately one hundred pulses per second and a pulse duration between one microsecond and ten microseconds.
Abstract:
An endoscopic mirror laser beam delivery system, e.g., for laser surgery, comprises a beam splitting module (22) for optical connection to a laser beam source (14) which supplies a low-power aiming beam (12) and a high-power surgical beam (10) to the splitting module (22); a two-mirror focusing unit (24) optically connected to the splitting unit (22); and an endoscopic tube (20) for guiding the beams focused by the focusing unit (24) to a target point (P). The system also comprises a method for checking alignment of the optical system by observing the positions of two visible beam spots. In case of misalignment, these two spots do not coincide in a single point, thereby indicating misalignment which can be then corrected. The system and the method eliminate central obscuration and misalignment of the laser beams on an operation site, thereby enabling a surgeon to be able to be confident that the surgeon beam will impinge precisely upon the spot delineated by the aiming beam.
Abstract:
The hollow guide is designed as a thin ceramic hollow tube which is guided in an outer tube while leaving a hollow space between the outer tube and the ceramic hollow tube, the outer tube being provided at its proximal end with a connecting part having a gas connection and receiving a focusing optical system. The ceramic hollow tube is guided in the outer tube through at least one mounting part arranged at the proximal end and at least one mounting part at the distal end, which in each case is supported locally with respect to the inner wall of the outer tube. The mounting parts are thus arranged so that free flow cross-sections to conduct the rinsing gas remain in the region of support, these being matched with the internal inner cross-section of the ceramic hollow tube, so that gas flow flowing past the ceramic hollow tube is produced both on the outside and on the inside. The gas flow effects cooling of the ceramic hollow tube on the one hand and prevents impurities penetrating the distal end of the ceramic hollow tube on the other hand.
Abstract:
A laser surgical instrument is embodied as a handpiece supportable on the wrist and forearm of a surgeon. The handpiece is connected by an umbilical cord to a remote console. An internal shutter mechanism is actuated by steady finger pressure applied by the surgeon at a fixture grasped by the hand during use. An annular aiming beam is projected through an aperture in a physical distance gauge to focus concentric with the surgical laser beam.
Abstract:
A surgical carbon dioxide laser is disclosed which includes a handpiece for directing a laser beam to a desired location. Mounted on the forward end of the handpiece is a hollow needle precisely aligned along the laser path. This permits the laser to be used in surgical applications where the needle perforates a porton of tissue to provide the laser beam direct access to distal tissue. The needle is mounted to the handpiece in a manner which provides for forward and lateral adjustment of the needle relative to the laser beam path which insures co-axiality between the laser beam and the needle lumen. This is crucial for the safe use of the laser. The needle is adjusted such that the focal point of the laser beam is approximately at the tip of the needle. This provides maximum energy at the tip of the needle where it is required. This apparatus is particularly useful in transmyocardial devices utilized to provide ischemic endocardial tissue direct access to blood within the ventricular cavity. The device is inserted within the epicardium of the heart; the laser is then activated to vaporize a channel of tissue through the endocardium. This provides for perforation of the endocardium with minimal damage to the epicardium.