Abstract:
Satellite radiotelephone systems include a space-based component that is configured to provide wireless radiotelephone communications in a satellite footprint over a satellite radiotelephone frequency band. The satellite footprint is divided into a plurality of satellite cells, in which satellite radiotelephone frequencies of the satellite radiotelephone frequency band are spatially reused. An ancillary terrestrial network is configured to terrestrially reuse at least one of the ancillary radiotelephone frequencies that is used in a satellite cell in the satellite footprint, outside the cell and in some embodiments separated therefrom by a spatial guardband.
Abstract:
Methods of reducing interference in wireless communications in a communications system are provided. A wireless communications signal is received within a frequency band. The wireless communications signal includes a desired component and an undesired interference component. The interference component may be caused by, for example, communications by another component of the communications system using frequencies in the frequency band. The received communications signal is converted to a frequency domain representation. Frequencies of the interference component of the frequency domain signal are identified. At least some of the identified frequencies of the interference component of the frequency domain signal are attenuated to generate an interference attenuated frequency domain signal. The interference attenuated frequency domain signal is converted to an interference attenuated time domain signal.
Abstract:
A first and/or a second communications system may provide communications service over a geographic area. A method of operating the first and/or the second communications systems may include generating a measure of aggregate interference reaching a satellite of the second communications system substantially from devices of the first communications system. The measure of aggregate interference reaching the satellite of the second communications system may be transmitted to an element of the first communications system.
Abstract:
Wireless communications are transmitted from at least two radioterminals to a base station co-channel over a return link using a return link alphabet. Wireless communications are also transmitted from the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet. The co-channel signals are deciphered at the receiver, while the radioterminals can use a smaller return link alphabet, which can reduce the power dissipation at the radioterminals.
Abstract:
A space-based network for a satellite radiotelephone system includes at least one receive-only satellite and at least one transmit satellite. The transmit satellite can be a transmit-only satellite or a transmit and receive satellite. The receive-only satellite(s) are configured to receive wireless communications from a radiotelephone at a location over a satellite frequency band. The transmit satellite(s) are configured to transmit wireless communications to the radiotelephone at the location over the satellite frequency band. By providing at least one receive-only satellite and at least one transmit satellite, space-based networks can offer a significant link margin, without the need to undesirably burden the radiotelephones themselves to achieve this link margin.
Abstract:
Methods, radioterminals, and broadcast message generation consoles provide location-based broadcast messaging for users. A method of operating a radioterminal can include receiving at the radioterminal over a wireless air interface a broadcast message that includes region information that defines a geographic region of applicability. A determination is made at the radioterminal whether the radioterminal is located in the region of applicability. A functional mode of the radioterminal is activated in response to the radioterminal being in the region of applicability. The functional mode may include activating a user interface of the radioterminal.
Abstract:
A satellite communications system includes a satellite that is configured to wirelessly communicate with radioterminals in a satellite coverage area over a satellite frequency band, and an ancillary terrestrial component that is configured to wirelessly communicate with radioterminals in the satellite coverage area over at least some of the satellite frequency band, to thereby terrestrially reuse at least some of the satellite frequency band. Wireless communications with a radioterminal are handed over from the ancillary terrestrial component to the satellite if the radioterminal transmit power exceeds a threshold, and a received satellite signal quality exceeds a threshold, even though the radioterminal is able to wirelessly communicate with the ancillary terrestrial component. Downlink wireless radiation that is received at the radioterminal from a satellite may be monitored to determine potential interference created by the uplink radiation of the radioterminal due to the terrestrial reuse of at least some of the satellite frequency band.
Abstract:
A method and apparatus of communicating information using Time Division Multiple Access and adaptive transmission and reception are disclosed. Signal bursts are transmitted from TDMA transmitters to a TDMA receiver wherein the transmitter codes the information and transmits coded information to the receiver using at least one of two timeslots of a plurality of timeslots in a repetitive TDMA frame period. Both of the two timeslots are received whether or not the transmitter has transmitted using one or two timeslots and the received signals are classified as intended and non-intended. Successively received signals classified as intended are then assembled into a block for decoding to reproduce the information.
Abstract:
Downlink signal bursts are transmitted from a plurality of visible satellites to a plurality of user terminals in a downlink region that is serviced by the plurality of visible satellites. A first downlink signal burst is sent from a first one of the visible satellites to a first user terminal in the downlink region. A second downlink signal burst is sent from a second one of the visible satellites to the first user terminal to be received at a time that is a function of a separation distance of the first user terminal in the downlink region from the Time Alignment Center (TAC) of the downlink region. First downlink signal bursts and second downlink signal bursts also are sent to other user terminals in the downlink region. The first and second downlink signal bursts preferably are sent over respective first and second carrier frequencies. In preferred embodiments, the downlink signal bursts are transmitted in a plurality of repeating frames of downlink signal bursts of a predetermined frame repetition period. The second downlink signal burst is sent so that it will be received by the intended user terminal at a time offset from the first downlink signal burst that is one half the predetermined frame repetition period plus a delay time &Dgr;T that is a function of a separation distance of the first user terminal in the downlink region from the TAC of the downlink region.
Abstract:
An improved multi-mode telephone for use in an improved satellite communication method and system. The telephone is selectively capable of receiving signals at different carrier bandwidths, such that a satellite communication system having a non-symmetrical air interface can be easily implemented without requiring rate conversion hardware or software at the satellite for direct mobile-to-mobile communications.