Abstract:
A method is provided for calibrating a display having color channels. Each color channel is capable of adjusting settings for pixel values at gray level entries. The method includes selecting a gray level entry for calibration. The method also includes providing a target white point in chromaticity coordinates (x, y) and a target brightness at the selected gray level entry to the display. The method further includes adjusting the setting for the pixel values for the color channels at the selected gray level entry such that the display achieves the target white point and the target brightness at an adjusted pixel value.
Abstract:
One embodiment may take the form of a UV mask for use while curing sealant on LCD displays. The UV mask includes a mother glass and a UV mask layer on the mother glass. A UV absorption film is located adjacent the UV mask layer and an anti-reflection (AR) film is located adjacent the UV absorption film.
Abstract:
Displays such as liquid crystal displays may be provided with transparent substrates that minimize light leakage from the display. The transparent substrates may include a thin-film transistor substrate having thin-film transistors formed on a surface of the thin-film transistor substrate and a color filter substrate having color filter elements formed on a surface of the color filter substrate. The thin-film transistor substrate may be formed from a material having a relatively low photo-elastic constant. The color filter substrate may be formed from a material having a relatively low photo-elastic constant. Reduced birefringence effects in the thin-film transistor substrate and the color filter substrate may help minimize light leakage from the display when some or all of the display experiences internal or external stresses.