摘要:
A planar fingerprint pattern detecting array includes a large number of individual skin-distance sensing cells that are arranged in a row/column configuration. Each sensing cell includes an amplifier having an ungrounded input node and an ungrounded output node. Output-to-input negative feedback that is sensitive to the fingerprint pattern is provided for each amplifier by way of (1) a first capacitor plate that is placed vertically under the upper surface of a dielectric layer and is connected to the ungrounded amplifier input node, (2) a second capacitor plate that is placed vertically under the upper surface of the dielectric layer in close horizontal spatial relation to the first capacitor plate and is connected to the ungrounded output node, and (3) an ungrounded fingertip whose fingerprint pattern is to be detected, which ungrounded fingertip is placed on the upper surface of the dielectric layer in close vertical spatial relation with the first and second capacitor plates. Electrostatic discharge protection relative to electrostatic potential that may be carried by the ungrounded fingertip is provided by placing a number of grounded metal paths within the dielectric layer to spatially surround each of the first and second capacitor plates, this being done in a manner that does not disturb the ungrounded state of the fingertip.
摘要:
A biometric sensor device, such as a fingerprint sensor, comprises a substrate to which is mounted a die on which is formed a sensor array and at least one conductive bezel. The die and the bezel are encased in a unitary encapsulation structure to protect those elements from mechanical, electrical, and environmental damage, yet with a portion of the sensor array and the bezel exposed or at most thinly covered by the encapsulation or other coating material structure.
摘要:
A planar fingerprint pattern detecting array includes a large number of individual skin-distance sensing cells that are arranged in a row/column configuration. Each sensing cell includes a first capacitor plate placed vertically under the upper surface of a dielectric layer and a second capacitor plate that is placed vertically under the upper surface of the dielectric layer in close horizontal spatial relation to the first capacitor plate. Electrostatic discharge protection relative to electrostatic potential that may be carried by an ungrounded fingertip is provided by placing a number of grounded metal paths within the dielectric layer to spatially surround each of the first and second capacitor plates, this being done in a manner that does not disturb the ungrounded state of the fingertip.
摘要:
A planar fingerprint pattern detecting array includes a large number of individual skin-distance sensing cells that are arranged in a row/column configuration. Each sensing cell includes an amplifier having an ungrounded input mode and an ungrounded output node. Output-to-input negative feedback that is sensitive to the fingerprint pattern is provided for each amplifier by way of (1) a first capacitor plate that is placed vertically under the upper surface of a dielectric layer and is connected to the ungrounded amplifier input node, (2) a second capacitor plate that is placed vertically under the upper surface of the dielectric layer in close horizontal spatial relation to the first capacitor plate and is connected to the ungrounded output node, and (3) an ungrounded fingertip whose fingerprint pattern is to be detected, which ungrounded fingertip is placed on the upper surface of the dielectric layer in close vertical spatial relation with the first and second capacitor plates. Electrostatic discharge protection relative to electrostatic potential that may be carried by the ungrounded fingertip is provided by placing a number of grounded metal paths within the dielectric layer to spatially surround each of the first and second capacitor plates, this being done in a manner that does not disturb the ungrounded state of the fingertip.
摘要:
A substrate having a fingerprint sensing system usable as a command interface using finger movements. A user's fingerprint pattern is recognized and compared to previously stored reference patterns. If the fingerprint pattern matches a previously stored pattern, the user is then permitted to enter certain commands via the same interface system. For example, in the case of an automobile, a user may identify themselves with their fingerprint, and then perform such functions as unlocking the doors, setting the seat to a selected location, or even pre-starting the car prior to their entering the automobile. The very same devices which perform the fingerprint identification and sensing are also used for the input sensing and command recognition to perform the various commands. A user is thus able to securely control desired functions in an automobile, while being assured that an unauthorized user will not have access to the automobile, even as they were able to obtain the command interface device.
摘要:
The enclosure assembly comprises a stationary member including at least two substantially parallel sidewalls, the sidewalls, the sidewalls partially defining a cavity in which the fingerprint sensor is disposed. An access piece, configured to move relative to the stationary member, has a surface area larger than the surface area of the fingerprint sensor and further includes a conductive portion electrically coupled to ground. A movement apparatus is preferably mechanically coupled to the stationary member and the moveable access piece. The movement apparatus is configured to maintain the moveable access piece in a position covering the fingerprint sensor and yet to allow motion of the moveable access piece relative to the stationary member so as to expose the fingerprint sensor. According to another embodiment, a method for enrolling a composite image of an object using a fingerprint sensor is provided. According to an embodiment, the method comprises the steps of receiving a finger disposed over a fingerprint sensor in a first stationary position; capturing a first image of a first portion of the finger with the fingerprint sensor; causing the finger to be repositioned over the fingerprint sensor in a second stationary position; capturing a second image of a second portion of the finger with the fingerprint sensor; and constructing a representative image of the finger from the first and second images.
摘要:
For each pixel in an array of pixels in a fingerprint sensor, a fingerprint capacitor is defined by the fingerprint-bearing skin of a user's finger proximate to the top exposed surface of a sensing plate of the pixel. First and second plates are embedded in dielectric material beneath the sensing plate, and define therewith first and second capacitors of a sensing element. The capacitance of the fingerprint capacitor is coupled by the sensing element to an amplifier. During a sensing operation, the amplifier generates a pixel output signal that is a function of the variable capacitance of the fingerprint capacitor, which varies according to the presence of a fingerprint ridge or valley appearing directly above the sensing plate when the user's finger is in contact with the fingerprint sensor.
摘要:
A biometric sensor assembly comprises a substrate to which is mounted a die containing sensor circuitry, at least one conductive bezel having a visual indicator region formed therein, and electrically connected to said die by way of said substrate, a light source, and a light-directing region directing light from the light source to the visual indicator region. The die, the light-directing region, and the bezel are encased in an encapsulation structure such that a portion of a surface of the die and the visual indication region are exposed or at most thinly covered by the encapsulation structure. The light-directing region directs light emitted by the light source within the encapsulation structure to the visual indicator region. Desired indicia in the visual indicator region may thereby be illuminated, while the die and bezel, and optionally the light source, are protected by the encapsulation structure.
摘要:
An improved fingerprint sensing device is provided with multiple sensing apparatus, two or more of which operating on different sensing principles. For example, a capacitive sensor may be integrally formed with an optical sensor on a single substrate. Ideally, the multiple sensing apparatus are disposed such that they may sense nearly identical portions of a fingerprint simultaneously. A primary sensor may be employed to establish the identity of a user based on a fingerprint, while a secondary sensor may be employed to establish that the fingerprint is part of a live human (anti-spoofing). Integrated light sources may be provided to drive an optical sensor. The light sources may also provide visual cues for usage, and enhance the aesthetics of the device.
摘要:
In a biometric sensor system and method, storage of acquired biometric data and/or processing of that data may be shifted from specialized secure processing hardware to host system resources for improved speed and reduced cost of biometric sensor devices and systems. Stored data may be encrypted and/or signed by the specialized secure processing hardware and/or software. A database of authorized biometric data (e.g., patterns or key features representing all or a portion of the fingerprints of authorized users) may be stored on the host system either encrypted or non-encrypted or both. Preliminary matching against a database of many enrolled fingerprints may be accomplished by the system processor to ease the processing burden on the specialized secure processing hardware/software. Final match confirmation remains within exclusive control of the specialized secure processing hardware/software in order to prevent data tampering or other efforts to defeat the security provided by biometric identification.