Abstract:
An apparatus includes first and second filters and a bandwidth control circuit. The first filter operates as part of a first oscillator in a first mode and filters a first input signal and provides a first output signal in a second mode. The second filter operates as part of a second oscillator in the first mode and filters a second input signal and provides a second output signal in the second mode. The bandwidth control circuit adjusts the bandwidth of the first and second filters in the first mode, e.g., adjusts the oscillation frequency of each oscillator to obtain a target bandwidth for an associated filter. The apparatus may further include first and second gain control circuits. Each gain control circuit may vary the amplitude of an oscillator signal from an associated oscillator and/or set a gain of an associated filter in the first mode.
Abstract:
Techniques for optimizing gain or noise figure of an RF receiver are disclosed. In an exemplary embodiment a controller controls a capacitor bank between an LNA and a mixer of the RF front end of the receiver. For a given center frequency a first set of capacitors is switched to the mixer and a second set of capacitors is switched to ground. The ratio of capacitance of the second set to the first set of capacitors affects either gain of the RF FE or noise figure of the receiver. Therefore, the RF FE of the receiver may be controlled in such a way as to optimize for either RF FE gain or for receiver noise figure.
Abstract:
An apparatus includes first and second filters and a bandwidth control circuit. The first filter operates as part of a first oscillator in a first mode and filters a first input signal and provides a first output signal in a second mode. The second filter operates as part of a second oscillator in the first mode and filters a second input signal and provides a second output signal in the second mode. The bandwidth control circuit adjusts the bandwidth of the first and second filters in the first mode, e.g., adjusts the oscillation frequency of each oscillator to obtain a target bandwidth for an associated filter. The apparatus may further include first and second gain control circuits. Each gain control circuit may vary the amplitude of an oscillator signal from an associated oscillator and/or set a gain of an associated filter in the first mode.
Abstract:
A class AB amplifier with resistive level-shifting circuitry is described. In one exemplary design, the class AB amplifier includes an input stage, a resistive level-shifting stage, a class AB output stage, and a bias circuit. The input stage receives an input signal and provides a first drive signal. The resistive level-shifting stage receives the first drive signal and provides a second drive signal. The output stage receives the first and second drive signals and provides an output signal. The bias circuit generates a bias voltage for the resistive level-shifting stage to obtain a desired quiescent current for the output stage. In one exemplary design, the resistive level-shifting stage includes a transistor and a resistor. The transistor receives the bias voltage and provides the second drive signal. The resistor is coupled to the transistor and provides a voltage drop between the first and second drive signals.