Abstract:
Bracket (1) with a pad (3) for affixing it to a tooth of a patient, with a bracket body (5) that has a slot (7) for receiving an orthodontic wire (9), and with a channel-like wire guide (11) which has wire guide surfaces (11F) for guiding the wire (9) and which is assigned a lateral insertion area (13) for insertion of the wire (9) into the wire guide (11), wherein the insertion area (13) has, in the longitudinal direction of the wire (9), a curved section (13A) through which the wire (9) can be inserted into the wire guide (11) in an elastically deformed state, such that the wire (9), on forming back to a rectilinear state, locks in the wire guide (11), and that the wire guide surfaces (11F) enclose the wire (9) in a circle shape, such that the wire (9) is held longitudinally displaceably in the wire guide (11) by the wire guide surfaces (11F) and is secured against escaping laterally from the wire guide (11).
Abstract:
A customized orthodontic bracket system is provided. The system can include a bracket having a customized bracket bonding pad for bonding the bracket to a tooth of a patient and a bracket slot adapted to receive a customized archwire. The customized archwire is adapted to be positioned in the bracket slot to form a precise bracket slot-archwire interface. The bracket slot and the archwire when positioned in the bracket slot can be positioned substantially adjacent the tooth surface to reduce induced vertical error in tooth positioning. The bracket slot can be configured to have a bracket slot width substantially matching a cross-section of the archwire to reduce torque rotation around an axis of the archwire when positioned therein to further enhance end-of-treatment tooth positioning and reduce overall treatment time.
Abstract:
A method for producing a patient-specific modular bracket having a pad and a bracket body. A bracket body library of bracket bodies includes bodies that are formed from a raw bracket body having a spacer section. A first parameter is established for cutting through the spacer section from a slot of the bracket body to set a height of the bracket body. A second parameter is established for cutting through the spacer section at an angle to a mesio-distal axis of the bracket body to set a torque value of the bracket body. A third parameter is established for cutting through the spacer section at an angle to an occlusal-gingival axis to set a rotation value of the bracket body. The spacer section is cut through according to the first, second and third parameters. Patient specific set-ups are then created by selecting and attaching pads from a raw pad library.
Abstract:
Bracket (1) with a pad (3) for affixing it to a tooth of a patient, with a bracket body (5) that has a slot (7) for receiving an orthodontic wire (9), and with a channel-like wire guide (11) which has wire guide surfaces (11F) for guiding the wire (9) and which is assigned a lateral insertion area (13) for insertion of the wire (9) into the wire guide (11), wherein the insertion area (13) has, in the longitudinal direction of the wire (9), a curved section (13A) through which the wire (9) can be inserted into the wire guide (11) in an elastically deformed state, such that the wire (9), on forming back to a rectilinear state, locks in the wire guide (11), and that the wire guide surfaces (11F) enclose the wire (9) in a circle shape, such that the wire (9) is held longitudinally displaceably in the wire guide (11) by the wire guide surfaces (11F) and is secured against escaping laterally from the wire guide (11).
Abstract:
Process for programming an orthodontic component from a shape memory material starting from an initial shape of the orthodontic component into a target shape to be programmed of the orthodontic component, wherein the target shape compared to the initial shape at least sectionally has a severe bending, the process comprising the following steps:
a. providing an orthodontic component (1) of a shape memory material in an initial shape, b. creating a target baking mold for the orthodontic component (1), c. inserting the orthodontic component (1) into the target baking mold, and d. baking the orthodontic component (1) in the target baking mold in order to program it into the target shape,
characterized by the following steps after step a)
e. creating at least one intermediate baking mold for the orthodontic component (1), in which intermediate baking mold the orthodontic component (1) has an intermediate shape between the initial shape and the target shape, f. inserting the orthodontic component (1) into the intermediate baking mold, and g. baking the orthodontic component (1) in the intermediate baking mold.
Abstract:
A method for producing at least one patient-specific pad for a modular bracket having a pad and a bracket body includes providing a pad material section. A punch is provided having at least one punching stamp for punching out at least one raw pad from the pad material section. At least one pad is punched out from the pad material section with the punch to produce a raw pad library. A patient-specific set-up is generated. The set-up is made of plaster, and includes the teeth to be treated of an upper jaw and/or of a lower jaw of a patient. A raw pad is selected from the raw pad library for a patient's tooth to be treated. A gap between the raw pad and the corresponding tooth in the set-up is filled using a filling material to produce for the pad a tooth-specific glued surface allowing for a form-fit to the clinical tooth of the patient.
Abstract:
A method for producing a patient-specific pad (3) for a modular bracket (1) having a pad (3) and a bracket body (7), which comprises the steps: P1 a) providing a pad material section, which preferably is plane, b) providing a punch having at least one punching stamp for punching out at least one raw pad (5) from the pad material section, c) punching out of at least one raw pad (5) from the pad material section by means of the punch, d) generating a patient-specific set-up, in particular made of plaster, of the teeth to be treated of an upper jaw and/or of a lower jaw of a patient, e) selecting a raw pad (5) from the raw pad library (19) for each of the patient's teeth to be treated, f) filling a gap (27) between the raw pad (5) and the corresponding tooth in the set-up using a filling material, especially of plastic, in order to produce for the pad (3) a tooth-specific glued surface (3K) allow for a form fit to the clinical tooth of the patient.
Abstract:
Bracket with a pad for affixing it to a tooth of a patient, with a bracket body that has a slot for receiving an orthodontic wire, and with a channel-like wire guide which has wire guide surfaces for guiding the wire and which is assigned a lateral insertion area for insertion of the wire into the wire guide, wherein the insertion area has, in the longitudinal direction of the wire, a curved section through which the wire can be inserted into the wire guide in an elastically deformed state, such that the wire, on forming back to a rectilinear state, locks in the wire guide, and that the wire guide surfaces enclose the wire in a circle shape, such that the wire is held longitudinally displaceably in the wire guide by the wire guide surfaces and is secured against escaping laterally from the wire guide.
Abstract:
A customized orthodontic bracket system is provided. The system can include a bracket having a customized bracket bonding pad for bonding the bracket to a tooth of a patient and a bracket slot adapted to receive a customized archwire. The customized archwire is adapted to be positioned in the bracket slot to form a precise bracket slot-archwire interface. The bracket slot and the archwire when positioned in the bracket slot can be positioned substantially adjacent the tooth surface to reduce induced vertical error in tooth positioning. The bracket slot can be configured to have a bracket slot width substantially matching a cross-section of the archwire to reduce torque rotation around an axis of the archwire when positioned therein to further enhance end-of-treatment tooth positioning and reduce overall treatment time.
Abstract:
A customized orthodontic bracket system is provided. The system can include a bracket having a customized bracket bonding pad for bonding the bracket to a tooth of a patient and a bracket slot adapted to receive a customized archwire. The customized archwire is adapted to be positioned in the bracket slot to form a precise bracket slot-archwire interface. The bracket slot and the archwire when positioned in the bracket slot can be positioned substantially adjacent the tooth surface to reduce induced vertical error when the tooth is in a finished position and substantially parallel to the directly adjacent portion of the tooth surface to reduce bracket thickness. The bracket slot can also be configured to have a bracket slot width substantially matching a dimension of a cross-section of the archwire to reduce torque rotation around an axis of the archwire when positioned therein to further enhance end-of-treatment tooth positioning and reduce overall treatment time.