Abstract:
The invention relates to acquiring seismic data in either land or marine environments, but typically marine environments where a pulse-type source is fired in a distinctive composite pulse like a distinctive rumble. In a preferred embodiment, a number of pulse-type seismic sources, sometimes called an array, are fired in a distinctive composite pulse to be able to identify within the returning wavefield the energy resulting from the composite pulse. Firing the pulse-type sources creates an identifiable signature so that two or more marine seismic acquisition systems with source arrays can be acquiring seismic data concurrently and the peak energy delivered into the water will be less, which will reduce the irritation of seismic data acquisition to marine life.
Abstract:
Methods and systems are provided for acquiring seismic data in a marine environment using survey paths following a series of linked curved paths so as to obtain multi-azimuthal data over a sub-surface target. Marine vessels towing multiple seismic streamers may be configured to travel substantially along a series of linked deviated paths or a series of linked curved paths. Sources may be excited to introduce acoustic wave energy in the marine environment and into the subsea region. The acoustic wave energy then reflects and refracts from the subsea region to form reflected and refracted wave energy, which is detected by seismic receivers spaced along the streamers. The detected seismic data is then interpreted to reveal seismic information representative of the surveyed subsea region. Other enhancements include configuring the streamers in a flared configuration, where the lateral spacing increases rearwardly over the length of the seismic streamers.
Abstract:
The invention relates to maintaining constant holddown force on the vibrator baseplate during actuation. The invention described measures the weight on the point of locomotion verses the baseplate and dynamically adjusts the forces required to keep the holddown force on the baseplate constant.
Abstract:
The invention relates to acquiring seismic data in either land or marine environments, but typically marine environments where a pulse-type source is fired in a distinctive composite pulse like a distinctive rumble. In a preferred embodiment, a number of pulse-type seismic sources, sometimes called an array, are fired in a distinctive composite pulse to be able to identify within the returning wavefield the energy resulting from the composite pulse. Firing the pulse-type sources creates an identifiable signature so that two or more marine seismic acquisition systems with source arrays can be acquiring seismic data concurrently and the peak energy delivered into the water will be less, which will reduce the irritation of seismic data acquisition to marine life.
Abstract:
The invention relates to continuously or near continuously acquiring seismic data where at least one pulse-type source is fired in a distinctive sequence to create a series of pulses and to create a continuous or near continuous rumble. In a preferred embodiment, a number of pulse-type seismic sources are arranged in an array and are fired in a distinctive loop of composite pulses where the returning wavefield is source separable based on the distinctive composite pulses. Firing the pulse-type sources creates an identifiable loop of identifiable composite pulses so that two or more marine seismic acquisition systems with pulse-type seismic sources can acquire seismic data concurrently, continuously or near continuously and the peak energy delivered into the water will be less, which will reduce the irritation of seismic data acquisition to marine life.
Abstract:
Methods and systems are provided for acquiring seismic data in a marine environment using survey paths following a series of linked curved paths so as to obtain multi-azimuthal data over a sub-surface target. Marine vessels towing multiple seismic streamers may be configured to travel substantially along a series of linked deviated paths or a series of linked curved paths. Sources may be excited to introduce acoustic wave energy in the marine environment and into the subsea region. The acoustic wave energy then reflects and refracts from the subsea region to form reflected and refracted wave energy, which is detected by seismic receivers spaced along the streamers. The detected seismic data is then interpreted to reveal seismic information representative of the surveyed subsea region. Other enhancements include configuring the streamers in a flared configuration, where the lateral spacing increases rearwardly over the length of the seismic streamers.
Abstract:
Method for acquiring and evaluating geometry of a well includes deploying at least one grid of geophysical sensors, wherein the at least one grid of the sensors is deployed in a 2D or 3D configuration; acquiring an initial geophysical survey of geophysical parameters of the well; fracturing the well creating a fracture while simultaneously; injecting an electrically active proppant into the fracture, wherein the electrically active proppant is injected into the fracture during fracturing, after fracturing or during and after fracturing; continuously acquiring a geophysical survey of geophysical parameters of the well during the fracturing; and acquiring a final geophysical survey of geophysical parameters of the fracture upon completion of the fracturing.
Abstract:
The invention relates to a seismic acquisition process where the streamers are intentionally directed to follow an oscillating sweep pattern behind a tow vessel to counteract the effect of the large gaps between the streamers while acquire a wide sweep of data through each pass over the survey area.