Abstract:
The invention relates to acquiring seismic data in either land or marine environments, but typically marine environments where a pulse-type source is fired in a distinctive composite pulse like a distinctive rumble. In a preferred embodiment, a number of pulse-type seismic sources, sometimes called an array, are fired in a distinctive composite pulse to be able to identify within the returning wavefield the energy resulting from the composite pulse. Firing the pulse-type sources creates an identifiable signature so that two or more marine seismic acquisition systems with source arrays can be acquiring seismic data concurrently and the peak energy delivered into the water will be less, which will reduce the irritation of seismic data acquisition to marine life. In addition, the composite pulse may be formulated by timing the firing of several of the sources with respect to energy emitted by “ringing” bubbles that attenuate within 100 to 300 ms to provide either or both of low frequency pulses and high frequency pulses to provide data for various processing and analysis of the data returned from the subsurface. On land, the complicating factor to be addressed is reverberation rather than bubbles.
Abstract:
The invention relates to maintaining constant holddown force on the vibrator baseplate during actuation. The invention described measures the weight on the point of locomotion verses the baseplate and dynamically adjusts the forces required to keep the holddown force on the baseplate constant.
Abstract:
An adapted seismic vibrator for obtaining a true ground force comprising: a baseplate pad; a baseplate drive system, wherein the drive system is connected to the baseplate pad and moves the baseplate pad up and down; a vibrator controller electronics, wherein the electronics are connected to the drive system and causes the drive system to move the baseplate pad up and down; and a plurality of load cell sensors disposed between the baseplate pad and ground, wherein the sensors measure the vibrator output force during a sweep. A method of obtaining a true ground force sweep comprising the steps of: using the load cell sensors to measure an actual output force of a seismic vibrator and electronics to obtain an actual ground force data; using inversion to invert the actual ground force data and desired original pilot sweep to obtain a revised pilot sweep that produces a true ground force sweep; and entering the true ground force sweep into the electronics.
Abstract:
The invention relates to a seismic acquisition process where the streamers are intentionally directed to follow an oscillating sweep pattern behind a tow vessel to counteract the effect of the large gaps between the streamers while acquire a wide sweep of data through each pass over the survey area.
Abstract:
This invention relates to operating a seismic vibrator to produce a uniform displacement sweep wherein the baseplate drive is connected to the baseplate and the baseplate is moved in an up and down or reciprocating pattern creating displacement of the earth. The reciprocating pattern and physical displacement of the baseplate and the ground in contact with the baseplate is maintained at a relatively constant distance over at least most of the frequencies that are delivered into the earth although a constant displacement of the baseplate at higher frequencies will require greater power. The high frequency energy is more significantly present in the data traces of the recorded return wavefield and shows that Q attenuation is not fully to blame for the relative absence of high frequency data but rather in failing to effectively deliver high frequency energy into the earth in the first place.
Abstract:
The invention relates to continuously or near continuously acquiring seismic data where at least one pulse-type source is fired in a distinctive sequence to create a series of pulses and to create a continuous or near continuous rumble. In a preferred embodiment, a number of pulse-type seismic sources are arranged in an array and are fired in a distinctive loop of composite pulses where the returning wavefield is source separable based on the distinctive composite pulses. Firing the pulse-type sources creates an identifiable loop of identifiable composite pulses so that two or more marine seismic acquisition systems with pulse-type seismic sources can acquire seismic data concurrently, continuously or near continuously and the peak energy delivered into the water will be less, which will reduce the irritation of seismic data acquisition to marine life.
Abstract:
The invention relates to continuously or near continuously acquiring seismic data where at least one pulse-type source is fired in a distinctive sequence to create a series of pulses and to create a continuous or near continuous rumble. In a preferred embodiment, a number of pulse-type seismic sources are arranged in an array and are fired in a distinctive loop of composite pulses where the returning wavefield is source separable based on the distinctive composite pulses. Firing the pulse-type sources creates an identifiable loop of identifiable composite pulses so that two or more marine seismic acquisition systems with pulse-type seismic sources can acquire seismic data concurrently, continuously or near continuously and the peak energy delivered into the water will be less, which will reduce the irritation of seismic data acquisition to marine life.