Abstract:
A futures contract and method of computing a settlement price thereof are disclosed that enables a market participant to shed or acquire financial exposure in a conventional bond spread, in the form of single futures contract, rather than as a bona fide spread requiring active management of distinct long and short component bond positions, e.g. legs. The notional financial exposure of the futures contract is sized, not in terms of notional amounts/quantities of assets represented in the components of the futures contract's reference spread, but rather in terms of the pecuniary value of one basis point (i.e., 0.01 percent per annum) of the spread between yields to maturity for each of the components of the futures contract's reference spread. Effectively, the spread between the yields is defined inversely, i.e. the price per increment of spread is fixed whereas the quantities/notional amounts of reference bonds and the spread between them are not.
Abstract:
Computer readable media, methods, and apparatuses may be configured for processing a yield of a first financial instrument, determining a single floating rate payment based on the yield, determining a single fixed rate payment based on a fixed interest rate, determining a present value of the single floating rate payment, determining a present value of the single fixed rate payment, and generating a quote for a forward rate agreement index financial product as a function of the present value of the single floating rate payment and the present value of the single fixed rate payment.
Abstract:
The disclosed system makes available multiple interest rate futures contracts (“IRFC”) for a given set of interest rate securities, such as US Treasury Notes, which may be used to satisfy the delivery obligation. The terms on which the delivery obligation of each such IRFC are met are governed by an associated conversion factor yield (“CFY”) value which is associated, in turn, with a corresponding set of conversion factors (“CF”), each of which corresponds to one member of the set of securities eligible for delivery, and which may be used at the time of delivery of such eligible interest rate security, to determine the delivery invoice price. Offering different CFY's and corresponding CF's may enable a market participant who seeks to use such futures to acquire or shed financial risk exposure to select from such array of futures contracts the member contract that most closely mirror the participant's intended risk profile.
Abstract:
The disclosed embodiments relate to determining a listing date, an expiration date and the cash settlement price of a futures contract, i.e. a Treasury Futures, for the delivery of the most recently issued, referred to as an on-the-run, US treasury Note of a particular maturity by reference to the U.S. Treasury Auction cycle and the difference between a resultant industry surveyed swap rate and a resultant industry surveyed swap spread of the respective tenors (time remaining until maturity) of the on-the-run treasury futures.
Abstract:
The disclosed system makes available multiple interest rate futures contracts (“IRFC”) for a given set of interest rate securities, such as US Treasury Notes, which may be used to satisfy the delivery obligation. The terms on which the delivery obligation of each such IRFC are met are governed by an associated conversion factor yield (“CFY”) value which is associated, in turn, with a corresponding set of conversion factors (“CF”), each of which corresponds to one member of the set of securities eligible for delivery, and which may be used at the time of delivery of such eligible interest rate security, to determine the delivery invoice price. Offering different CFY's and corresponding CF's may enable a market participant who seeks to use such futures to acquire or shed financial risk exposure to select from such array of futures contracts the member contract that most closely mirror the participant's intended risk profile.
Abstract:
A computer implemented method for determining a margin requirement for a market participant includes maintaining, by a processor associated with an exchange, an exchange account reflecting an exchange position resulting from a trade executed on the exchange for a product available via the exchange, the exchange account being maintained separately from a custodian bank account associated with a custodian bank, the custodian bank account reflecting a repo position resulting from a repo transaction facilitated by the custodian bank between the market participant and a counterparty to the repo transaction. The method further includes receiving data reflective of the repo position via a communication interface between the exchange account and the custodian bank account, and determining the margin requirement for the market participant based on the received data and the exchange position.
Abstract:
A calendar spread futures contract is a forward contract on the intermonth spread of futures contracts. The calendar spread futures contract can be independently traded and accounted for independent of the traditional roll periods of the complementary futures contracts. An open interest holder can hedge against price volatility in the related futures contracts that may occur prior to or during the roll period. In other words, the calendar spread futures contract locks in the current spread between the front-month contract and the first-deferred contract. Buying a calendar spread futures control is equivalent to buying the spread difference between the expiring contract and the second expiry. Selling a calendar spread futures contract is equivalent to selling the spread difference between the expiring contract and the second expiry.