摘要:
Systems and methods are described for performing policy-managed, peer-to-peer service orchestration in a manner that supports the formation of self-organizing service networks that enable rich media experiences. In one embodiment, services are distributed across peer-to-peer communicating nodes, and each node provides message routing and orchestration using a message pump and workflow collator. Distributed policy management of service interfaces helps to provide trust and security, supporting commercial exchange of value. Peer-to-peer messaging and workflow collation allow services to be dynamically created from a heterogeneous set of primitive services. The shared resources are services of many different types, using different service interface bindings beyond those typically supported in a web service deployments built on UDDI, SOAP, and WSDL. In a preferred embodiment, a media services framework is provided that enables nodes to find one another, interact, exchange value, and cooperate across tiers of networks from WANs to PANs.
摘要:
Systems and methods are described for performing policy-managed, peer-to-peer service orchestration in a manner that supports the formation of self-organizing service networks that enable rich media experiences. In one embodiment, services are distributed across peer-to-peer communicating nodes, and each node provides message routing and orchestration using a message pump and workflow collator. Distributed policy management of service interfaces helps to provide trust and security, supporting commercial exchange of value. Peer-to-peer messaging and workflow collation allow services to be dynamically created from a heterogeneous set of primitive services. The shared resources are services of many different types, using different service interface bindings beyond those typically supported in a web service deployments built on UDDI, SOAP, and WSDL. In a preferred embodiment, a media services framework is provided that enables nodes to find one another, interact, exchange value, and cooperate across tiers of networks from WANs to PANs.
摘要:
Digital technology based consumer media devices have many desirable features, including the ability to easily find and watch television shows, and/or automatically record programs of interest. Disclosed is a system and method for allowing a group of television viewers to share program viewing information. This information, exchanged through various on-line community modalities (including Internet chat rooms, email, Internet Web Logs, and the like), can be used within a consumer media device, such as a Digital video Recorder to influence the decision process concerning which programs to record, buffer or view.
摘要:
Systems and methods are provided for protecting and managing electronic data signals that are registered in accordance with a predefined encoding scheme, while allowing access to unregistered data signals. In one embodiment a relatively hard-to-remove, easy-to-detect, strong watermark is inserted in a data signal. The data signal is divided into a sequence of blocks, and a digital signature for each block is embedded in the signal via a watermark. The data signal is then stored and distributed on, e.g., a compact disc, a DVD, or the like. When a user attempts to access or use a portion of the data signal, the signal is checked for the presence of a watermark containing the digital signature for the desired portion of the signal. If the watermark is found, the digital signature is extracted and used to verify the authenticity of the desired portion of the signal. If the signature-containing watermark is not found, the signal is checked for the presence of the strong watermark. If the strong watermark is found, further use of the signal is inhibited, as the presence of the strong watermark, in combination with the absence or corruption of the signature-containing watermark, provides evidence that the signal has been improperly modified. If, on the other hand, the strong mark is not found, further use of the data signal can be allowed, as the absence of the strong mark indicates that the data signal was never registered with the signature-containing watermark.
摘要:
Systems and methods are described for performing policy-managed, peer-to-peer service orchestration in a manner that supports the formation of self-organizing service networks that enable rich media experiences. In one embodiment, services are distributed across peer-to-peer communicating nodes, and each node provides message routing and orchestration using a message pump and workflow collator. Distributed policy management of service interfaces helps to provide trust and security, supporting commercial exchange of value. Peer-to-peer messaging and workflow collation allow services to be dynamically created from a heterogeneous set of primitive services. The shared resources are services of many different types, using different service interface bindings beyond those typically supported in a web service deployments built on UDDI, SOAP, and WSDL. In a preferred embodiment, a media services framework is provided that enables nodes to find one another, interact, exchange value, and cooperate across tiers of networks from WANs to PANs.
摘要:
Systems and methods are described for performing policy-managed, peer-to-peer service orchestration in a manner that supports the formation of self-organizing service networks that enable rich media experiences. In one embodiment, services are distributed across peer-to-peer communicating nodes, and each node provides message routing and orchestration using a message pump and workflow collator. Distributed policy management of service interfaces helps to provide trust and security, supporting commercial exchange of value. Peer-to-peer messaging and workflow collation allow services to be dynamically created from a heterogeneous set of primitive services. The shared resources are services of many different types, using different service interface bindings beyond those typically supported in a web service deployments built on UDDI, SOAP, and WSDL. In a preferred embodiment, a media services framework is provided that enables nodes to find one another, interact, exchange value, and cooperate across tiers of networks from WANs to PANs.
摘要:
Systems and methods are described for performing policy-managed, peer-to-peer service orchestration in a manner that supports the formation of self-organizing service networks that enable rich media experiences. In one embodiment, services are distributed across peer-to-peer communicating nodes, and each node provides message routing and orchestration using a message pump and workflow collator. Distributed policy management of service interfaces helps to provide trust and security, supporting commercial exchange of value. Peer-to-peer messaging and workflow collation allow services to be dynamically created from a heterogeneous set of primitive services. The shared resources are services of many different types, using different service interface bindings beyond those typically supported in a web service deployments built on UDDI, SOAP, and WSDL. In a preferred embodiment, a media services framework is provided that enables nodes to find one another, interact, exchange value, and cooperate across tiers of networks from WANs to PANs.
摘要:
Systems and methods are described for performing digital rights management. In one embodiment, a digital rights management engine is provided that evaluates license associated with protected content to determine if a requested access or other use of the content is authorized. In some embodiments, the licenses contain control programs that are executable by the digital rights management engine.
摘要:
Systems and methods are provided for protecting and managing electronic data signals that are registered in accordance with a predefined encoding scheme, while allowing access to unregistered data signals. In one embodiment a relatively hard-to-remove, easy-to-detect, strong watermark is inserted in a data signal. The data signal is divided into a sequence of blocks, and a digital signature for each block is embedded in the signal via a watermark. The data signal is then stored and distributed on, e.g., a compact disc, a DVD, or the like. When a user attempts to access or use a portion of the data signal, the signal is checked for the presence of a watermark containing the digital signature for the desired portion of the signal. If the watermark is found, the digital signature is extracted and used to verify the authenticity of the desired portion of the signal. If the signature-containing watermark is not found, the signal is checked for the presence of the strong watermark. If the strong watermark is found, further use of the signal is inhibited, as the presence of the strong watermark, in combination with the absence or corruption of the signature-containing watermark, provides evidence that the signal has been improperly modified. If, on the other hand, the strong mark is not found, further use of the data signal can be allowed, as the absence of the strong mark indicates that the data signal was never registered with the signature-containing watermark.
摘要:
Systems and methods are described for performing policy-managed, peer-to-peer service orchestration in a manner that supports the formation of self-organizing service networks that enable rich media experiences. In one embodiment, services are distributed across peer-to-peer communicating nodes, and each node provides message routing and orchestration using a message pump and workflow collator. Distributed policy management of service interfaces helps to provide trust and security, supporting commercial exchange of value. Peer-to-peer messaging and workflow collation allow services to be dynamically created from a heterogeneous set of primitive services. The shared resources are services of many different types, using different service interface bindings beyond those typically supported in a web service deployments built on UDDI, SOAP, and WSDL. In a preferred embodiment, a media services framework is provided that enables nodes to find one another, interact, exchange value, and cooperate across tiers of networks from WANs to PANs.