Abstract:
A compact optical splitter module is disclosed. One type of compact optical splitter module is a planar attenuated splitter module that includes a branching waveguide network having j≧1 50:50 splitters that form up to n≦2j output waveguides having associated n output ports, wherein only m
Abstract:
There are provided fiber optic local convergence points (“LCPs”) adapted for use with multiple dwelling units (“MDUs”) that facilitate relatively easy installation and/or optical connectivity to a relatively large number of subscribers. The LCP includes a housing mounted to a surface, such as a wall, and a cable assembly with a connector end to be optically connected to a distribution cable and a splitter end to be located within the housing. The splitter end includes at least one splitter and a plurality of subscriber receptacles to which subscriber cables may be optically connected. The splitter end of the cable assembly of the LCP may also include a splice tray assembly and/or a fiber optic routing guide. Furthermore, a fiber distribution terminal (“FDT”) may be provided along the subscriber cable to facilitate installation of the fiber optic network within the MDU.
Abstract:
An optical fiber distribution enclosure includes a housing defining an interior, a first fiber distribution area disposed within an upper portion of the interior, a second fiber distribution area disposed within a lower portion of the interior and a signal splitting area disposed between the fiber distribution areas. A splitter module secured within the signal splitting area has a connectorized splitter input optical fiber and connectorized splitter output optical fibers. A fiber parking area is movably disposed within the lower portion adjacent the second fiber distribution area for temporarily storing splitter output optical fibers that are not routed to the fiber distribution areas. An input fiber distribution area disposed within the interior interconnects an optical fiber of a feeder cable with the splitter input optical fiber. The splitter output optical fibers are eventually routed to a fiber distribution area and interconnected with a corresponding optical fiber of a distribution cable.
Abstract:
A ground retention apparatus is provided for deterring the theft of services from an outdoor pedestal. The ground retention apparatus includes a ground stake having a first end attached to the pedestal and a second end opposite the first end for engaging the ground beneath the pedestal. The ground retention apparatus further includes a stop plate secured to the ground stake medially between the first end and the second end. The stop plate defines a hinge line separating a lower portion that is stationary and an upper portion that is movable relative to the lower portion between a first position wherein the upper portion is generally parallel to the lower portion and a second position wherein the upper portion is angled relative to the lower portion. The stop plate prevents the ground stake from being removed from the ground, thereby deterring unauthorized access to the equipment inside the pedestal.
Abstract:
There are provided fiber optic local convergence points (“LCPs”) adapted for use with multiple dwelling units (“MDUs”) that facilitate relatively easy installation and/or optical connectivity to a relatively large number of subscribers. The LCP includes a housing mounted to a surface, such as a wall, and a cable assembly with a connector end to be optically connected to a distribution cable and a splitter end to be located within the housing. The splitter end includes at least one splitter and a plurality of subscriber receptacles to which subscriber cables may be optically connected. The splitter end of the cable assembly of the LCP may also include a splice tray assembly and/or a fiber optic routing guide. Furthermore, a fiber distribution terminal (“FDT”) may be provided along the subscriber cable to facilitate installation of the fiber optic network within the MDU.
Abstract:
An optical fiber distribution enclosure includes a housing defining an interior, a first fiber distribution area disposed within an upper portion of the interior, a second fiber distribution area disposed within a lower portion of the interior and a signal splitting area disposed between the fiber distribution areas. A splitter module secured within the signal splitting area has a connectorized splitter input optical fiber and connectorized splitter output optical fibers. A fiber parking area is movably disposed within the lower portion adjacent the second fiber distribution area for temporarily storing splitter output optical fibers that are not routed to the fiber distribution areas. An input fiber distribution area disposed within the interior interconnects an optical fiber of a feeder cable with the splitter input optical fiber. The splitter output optical fibers are eventually routed to a fiber distribution area and interconnected with a corresponding optical fiber of a distribution cable.
Abstract:
There is provided fiber drop terminals (“FDTs”) and related equipment for providing selective connections between optical fibers of distribution cables and optical fibers of drop cables, such as in multiple dwelling units. The FDTs require relatively little area and/or volume while providing convenient connectivity for a relatively large number of optical connections. The FDTs include adapters for optically connecting the connectors, and the adapters of some FDTs are adapted to rotate, move, or otherwise be removed to provide convenient access for technicians. Some FDTs and the related equipment are adapted for use with microstructured optical fiber having preferred bend characteristics.
Abstract:
There is provided splice trays and splice assemblies that provide convenient access to optical fiber slack within a relatively small area or volume. Some splice trays are adapted for use with microstructured optical fibers to further reduce the size of the splice tray or splice assembly. Some splice trays provide fiber routing devices on the cover of the splice tray. The fiber routing device may be positioned on an inside surface of the cover and/or on an outside surface of the cover. The splice trays and/or splice assemblies may be used with or as fiber drop terminals used within multiple dwelling units.
Abstract:
An optical connection closure has at least one connector port located within an external wall of the closure for receiving a connectorized optical fiber of a distribution cable on the inside of the closure and a pre-connectorized fiber optic drop cable on the outside of the closure. The closure includes a base, a cover affixed to the base and movable between a closed position and an opened position, and an end wall that defines at least a portion of at least one cable opening for receiving the distribution cable in a butt-type or a through-type closure configuration. The base and the cover define an interior cavity that optionally contains a splice tray for interconnecting the optical fiber of the distribution cable with a pigtail to create the connectorized optical fiber. The connector port may be located within an end wall, a bottom wall or a top wall of the closure.
Abstract:
A fiber optic interconnection closure includes a base and a cover, wherein an outer periphery of the base defines a surface for routing a fiber optic distribution cable into a cable entry location defined by the base. Alternatively, a fiber optic interconnection closure includes a base, a cover and at least one connector port located in an exterior wall of the base for receiving a fiber optic drop cable. An outer periphery of the base defines a surface for routing at least the distribution cable into a cable entry location defined by the base. In another embodiment, a fiber optic communications network includes a fiber optic distribution cable, at least one fiber optic drop cable, and an interconnection closure including a base and a cover. An outer periphery of the base defines a surface for routing at least the distribution cable into a cable entry location defined by the base.