Abstract:
Disclosed herein is an LC aligning agent using diamine having dendron side chains. In detail, the present invention relates to a composition for an LC alignment film which employs diamine having dendron side chains to produce polyamic acid, followed by imidization. When the LC alignment film is applied to a liquid crystal display device, high heat resistance, high penetration in a visible ray range, excellent alignment, and a high voltage holding ratio are assured. Even though it contains a small amount of functional diamine, a high pretilt angle can be assured. Thus, the pretilt angle is easily controlled and a vertical aligning force is improved.
Abstract:
Provided herein is a liquid crystal alignment agent including a polymer component including a polyamic acid repeating unit of Formula 1 wherein R1 may be a tetravalent organic radical; and R2 may include a bivalent radical of Formula 2 wherein one or more of the amic acids in one or more of the repeating units of Formula 1 may optionally be cyclized to form an imide. Also provided herein is a liquid crystal alignment film and a liquid crystal display fabricated therefrom.
Abstract:
Provided is an injectable drug carrier including a non-toxic Layered Double Hydroxide (LDH) and pharmaceutically acceptable excipients. Provided is also a method of preparing the injectable drug carrier, the method including: synthesizing LDH with various compositions and controlling the size and shape of the LDH at a level that the LDH has no adverse effect in vivo. A solution obtained by dispersing the LDH in a solvent is injected in vivo. According to the method, nano-size LDH that does not affect a blood vessel in vivo can be synthesized. The LDH thus synthesized has no adverse effect in vivo even at a concentration of 400 mg/kg, and thus can contribute to establishment of a drug delivery system capable of improving the delivery efficiency of a specific drug.
Abstract:
One embodiment of the present invention provides a liquid crystal photo-alignment agent that includes a polyamic acid copolymer including a repeating unit having the following Formula 1 and a repeating unit having the following Formula 2; a polyimide copolymer including a repeating unit having the following Formula 3 and a repeating unit having the following Formula 4; or a combination thereof: wherein the definition of R1 to R8 are the same as in the specification. The liquid crystal photo-alignment agent can have improved liquid crystal alignment properties, electrical characteristics such as voltage holding ratio, pretilt angle, residual DC, and the like, printability, cleaning stability, and spot stability, and is capable of unidirectionally aligning liquid crystals by ultraviolet (UV) exposure.
Abstract:
3,4-Dicarboxy-1,2,3,4-tetrahydro-6-t-butyl-1-naphthalene-succinic dianhydride is provided. The tetracarboxylic dianhydride is represented by Formula 1, which is described in the specification. Further provided is a liquid crystal aligning agent comprising a polyimide prepared using the tetracarboxylic dianhydride and a solvent. Further provided is a liquid crystal alignment layer formed using the liquid crystal aligning agent. The liquid crystal alignment layer exhibits excellent electro-optical properties and good processability in terms of printability.
Abstract:
Disclosed herein is an LC aligning agent using diamine having dendron side chains. In detail, the present invention relates to a composition for an LC alignment film which employs diamine having dendron side chains to produce polyamic acid, followed by imidization. When the LC alignment film is applied to a liquid crystal display device, high heat resistance, high penetration in a visible ray range, excellent alignment, and a high voltage holding ratio are assured. Even though it contains a small amount of functional diamine, a high pretilt angle can be assured. Thus, the pretilt angle is easily controlled and a vertical aligning force is improved.
Abstract:
A phase-change random access memory device includes a semiconductor substrate, an interlayer dielectric layer formed over the semiconductor substrate and having contact holes defined therein, metal contacts formed in the contact holes, an ohmic contact layer formed over the metal contacts and having recesses defined therein, and switching elements formed over the recesses of the ohmic contact layer.
Abstract:
Disclosed herein is a novel functional diamine compound having a dendron structure, polyamic acid which is produced using functional diamine, aromatic cyclic diamine, aliphatic cyclic acid dianhydride, and aromatic cyclic acid dianhydride, polyimide which is produced by imidizing polyamic acid, and an LC alignment film produced using polyimide. Even if the diamine compound is used in a small amount, it is possible to realize a high pretilt angle, thus the pretilt angle is easily controlled. Therefore, it can be used to produce an LC alignment film using a twisted nematic (TN) mode, in which the pretilt angle of liquid crystal is low, and a vertically aligned (VA) mode, which requires a high pretilt angle of about 90°.
Abstract:
The present invention provides a liquid crystal photoalignment agent that includes a compound selected from the group consisting of a polyamic acid having a predetermined chemical formula, a polyimide polymer having a predetermined chemical formula, and a combination thereof, and a polyimide photopolymer. The liquid crystal photoalignment agent shows a long life-span, stably maintains a pretilt angle, and shows improved after-image characteristics, liquid crystal alignment properties, and chemical resistance.
Abstract:
The liquid crystal alignment agent according to one embodiment of the present invention includes a soluble polyimide polymer of Formula 1 and a solvent. The soluble polyimide polymer has a number average molecular weight of about 10,000 to 500,000 g/mol, and a polydispersity of about 1.2 to about 1.75. The liquid crystal alignment agent can have good printability on a substrate, and thereby can provide a liquid crystal alignment film that can have excellent film uniformity, even though its predrying temperature is varied.