Abstract:
A superconductor motor (10) comprises a stator assembly (14) which includes a plurality of solenoids (40-44). A rotor assembly (12) includes a disk (20) of superconductive material in which are entrapped magnetic lines of flux which cause the rotor to function as a magnet. The lines of flux tend to creep throughout the disk over time thereby reducing the magnetic properties of the rotor assembly and decreasing motor performance. A plurality of coils (48a-48l) are carried by the disk. The stator solenoids are energized to produce rotation of the rotor, and the coils are energized in a predetermined manner to compensate for the flux creep in the disk and to restore the rotor assembly's magnetic properties thus to prevent deterioration in motor performance.
Abstract:
A rotor assembly for a permanent magnet motor includes a set of laminatings forming a rotor body, each lamination having a first magnet slot therein. A generally rectangular permanent magnet is disposed in the magnet slot, the magnet slot of each lamination being shaped so as to receive the rectangular permanent magnet through all the skewed laminations with a minimum air gap. A method of making an assembly such as a rotor includes the steps of providing an assembly body made of ferromagnetic material defining at least one magnet slot therein. The slot is at least partially filled with a mixture of magnetizable particles in a binder. The mixture is compressed and then cured to bond the magnetizable particles together in the slot and the bonded particles are then magnetized in the slot to form a magnet in situ in the slot without an air gap.