Abstract:
Provided are a method, system, and article of manufacture for determining whether data written to source storage locations according to a write order is copied to corresponding target storage locations in the write order. Values are written to indicated source storage locations in a write order. The values written to the source storage locations are copied to corresponding target storage locations. The values at the target storage locations are read and a determination is made from the read values whether the values were written to the target storage locations in the write order.
Abstract:
Provided are a method, system, and article of manufacture for iterative data secret-sharing transformation and reconversion. In one aspect, data secret-sharing transformation and reconversion is provided in which each bit of an input stream of bits of data is split, on a bit by bit basis, into a pair of secret-sharing bits, and the secret-sharing bits of each pair of secret-sharing bits are separated into separate streams of secret-sharing bits. In this manner, one secret-sharing bit of each pair of secret-sharing bits may be placed in one stream of secret-sharing bits and the other secret-sharing bit of each pair may be placed in another stream of secret-sharing bits different from the one stream of secret-sharing bits. Confidentiality of the original input stream may be protected in the event one but not both streams of secret-sharing bits is obtained by unauthorized personnel. In another aspect, for an input stream of N bits, each received bit of the N bits of the input stream of data, may be interatively split, on a bit by bit basis, into a pair of secret-sharing bits, to generate as few as N+1 secret-sharing bits from the input stream of bits N bits. Other features and aspects may be realized, depending upon the particular application.
Abstract:
In one aspect of the present description, a data preservation function is provided for preserving a set of data on a source storage device at a point in time, and includes identifying as a function of prior update usage, such as input/output usage, of the data to be preserved, a portion of the data which is more likely to be the subject of updates during at least a portion of the data preservation operation as compared to the remaining portion of the data to be preserved, and copies the identified portion of the data to be preserved to a target storage device. In another aspect, the size of the portion of data to be identified is variable. In one embodiment, the size of the portion of data to be identified is a function of a parameter of the command, such that a user can specify the command parameter which affects the size of the portion of data which is prewritten to the target storage device. The parameter may be, for example, a percentage of the data to be preserved, such that a user can specify the percentage of the point-in-time data which is prewritten to the target storage device. Alternatively, the parameter may be, for example, a probability of a collision occurring, such that a user can specify a probability of a collision occurring. Other features and aspects may be realized, depending upon the particular application.
Abstract:
In one aspect of the present description, a data preservation function is provided for preserving a set of data on a source storage device at a point in time, and includes identifying as a function of prior update usage, such as input/output usage, of the data to be preserved, a portion of the data which is more likely to be the subject of updates during at least a portion of the data preservation operation as compared to the remaining portion of the data to be preserved, and copies the identified portion of the data to be preserved to a target storage device. In another aspect, the size of the portion of data to be identified is variable. Other features and aspects may be realized, depending upon the particular application.
Abstract:
In one aspect of the present description, a data preservation function is provided for preserving a set of data on a source storage device at a point in time, and includes identifying as a function of prior update usage, such as input/output usage, of the data to be preserved, a portion of the data which is more likely to be the subject of updates during at least a portion of the data preservation operation as compared to the remaining portion of the data to be preserved, and copies the identified portion of the data to be preserved to a target storage device. In another aspect, the size of the portion of data to be identified is variable. In one embodiment, the size of the portion of data to be identified is a function of a parameter of the command, such that a user can specify the command parameter which affects the size of the portion of data which is prewritten to the target storage device. The parameter may be, for example, a percentage of the data to be preserved, such that a user can specify the percentage of the point-in-time data which is prewritten to the target storage device. Alternatively, the parameter may be, for example, a probability of a collision occurring, such that a user can specify a probability of a collision occurring. Other features and aspects may be realized, depending upon the particular application.
Abstract:
A data transfer application implemented in a computational device receives a request to copy a plurality of storage volumes that form a consistency group. A determination is made that a first storage volume of the plurality of storage volumes is more likely to be written into than a second storage volume of the plurality of storage volumes, in response to receiving the request to copy the plurality of storage volumes. The first storage volume is copied before copying the second storage volume, in response to determining that the first storage volume is more likely to be written into than the second storage volume.
Abstract:
Provided are a method, system, and article of manufacture for iterative data secret-sharing transformation and reconversion. In one aspect, data secret-sharing transformation and reconversion is provided in which each bit of an input stream of bits of data is split, on a bit by bit basis, into a pair of secret-sharing bits, and the secret-sharing bits of each pair of secret-sharing bits are separated into separate streams of secret-sharing bits. In this manner, one secret-sharing bit of each pair of secret-sharing bits may be placed in one stream of secret-sharing bits and the other secret-sharing bit of each pair may be placed in another stream of secret-sharing bits different from the one stream of secret-sharing bits. Confidentiality of the original input stream may be protected in the event one but not both streams of secret-sharing bits is obtained by unauthorized personnel. In another aspect, for an input stream of N bits, each received bit of the N bits of the input stream of data, may be interatively split, on a bit by bit basis, into a pair of secret-sharing bits, to generate as few as N+1 secret-sharing bits from the input stream of bits N bits. Other features and aspects may be realized, depending upon the particular application.
Abstract:
Provided are a method, system, and article of manufacture for determining whether data written to source storage locations according to a write order is copied to corresponding target storage locations in the write order. Values are written to indicated source storage locations in a write order. The values written to the source storage locations are copied to corresponding target storage locations. The values at the target storage locations are read and a determination is made from the read values whether the values were written to the target storage locations in the write order.