摘要:
A blue light-emitting device, and an organic light-emitting display including the blue light-emitting device, has a non-resonance structure including a blue light-emitting layer between a reflective electrode and a transparent electrode, and thus has an excellent process margin, an excellent luminance characteristic even in a wide optical viewing angle, and a high color reproduction satisfying an sRGB blue standard.
摘要:
Provided is a white organic light emitting device and a display apparatus and a lighting apparatus that include the white organic light emitting device. The white organic light emitting device comprises an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode. The light emitting layer includes a red light emitting layer, a blue light emitting layer, and a green light emitting layer sequentially formed from the anode. A functional layer, which blocks an energy transfer and controls electron mobility between the light emitting layers, is formed between the red light emitting layer and the blue light emitting layer or between the blue light emitting layer and the green light emitting layer. The functional layer formed between the red light emitting layer and the blue light emitting layer has a thickness of 50 to 100 Å.
摘要:
Provided are an organic light emitting display device coupled to a photoelectric transistor. The organic light emitting display device includes an anode and a cathode separated from each other, a plurality of organic material layers formed between the anode and the cathode and including an organic light emitting layer, a light source applying an excitation pulse to the organic material layers, and a light receiving unit measuring changes in photoluminescence (PL) signals that are emitted from the organic material layers.
摘要:
A top-emitting or bottom-emitting OLED has a wide color gamut and reduces a variation in color with a viewing angle. The OLED includes a reflective electrode and a transmissive or semi-transmissive electrode disposed opposite each other; at least two organic emission layers (EMLs) interposed between the reflective electrode and the transmissive or semi-transmissive electrode; and an optical path control layer disposed on an outer surface of the transmissive or semi-transmissive electrode. A resonator is formed between the reflective electrode and the optical path control layer so a resonance mode of light extracted from the optical path control layer is a multi-resonance mode having at least two modes in a visible light region. A distance between the organic EMLs satisfies the condition of constructive interference between light beams emitted by the respective organic EMLs. A color display apparatus using the OLED are taught.
摘要:
Each of thin film deposition assemblies of a thin film deposition apparatus includes: a deposition source that includes a deposition material; a deposition source nozzle unit arranged at a side of the deposition source and including a plurality of deposition source nozzles arranged in a first direction; a patterning slit sheet arranged opposite to the deposition source nozzle unit and having a plurality of patterning slits arranged in the first direction; and a barrier plate assembly including a plurality of barrier plates arranged in the first direction, the barrier plate assembly being arranged between the deposition source nozzle unit and the patterning slit sheet. The thin film deposition apparatus and the substrate are separated from each other and are movable relative to each other. The deposition material includes a material to produce the thin film of a red (R), green (G) or blue (B) emission layer, or an auxiliary layer.
摘要:
An organic light emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a plurality of pixels in a matrix. The OLED display may include a substrate, a translucent layer formed on the substrate, a first electrode formed on the translucent layer, an organic light emitting member formed on the first electrode, and a second electrode formed on the organic light emitting member and including a reflective material. According to some aspects, the thickness of the organic light emitting member of the pixels forming the OLED display may be different than one another, or portions of each pixel may have different thickness for the organic light emitting members forming the pixel. With different thicknesses, the optical characteristics of the pixels forming the OLED display may be effectively compensated for luminance and color purity. As a result, the lateral viewing angle of an OLED display may be improved.
摘要:
Provided are an organic light-emitting compound that is a diarylethene derivative represented by Formula 1, and an organic electroluminescent (EL) device using the organic light-emitting compound, and a method of manufacturing the organic EL device: where R1, Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, k, l, m, and n are the same as defined in the specification. The organic light-emitting compound contains a cis-diarylethene group linked with an aliphatic ring, and thus crystallization of the organic light-emitting compound is unlikely to occur and the compound is highly soluble to organic solvents and easily provides liquid formulation with organic solvents. Thus, the organic light-emitting compound can easily be used in organic EL devices. An organic EL device manufactured using the compound can have a thermostable layer and thus has improved light-emitting properties in term of superior turn-on voltage, efficiency, color purity, etc.
摘要:
An organic light emitting device (OLED) having increased light output efficiency and a wide color gamut, and a color display apparatus employing the OLED, includes: a substrate; a reflective electrode formed on the substrate; an organic light emitting layer formed on the reflective electrode; a semi-transparent or transparent electrode formed on the organic light emitting layer; and an optical path control layer formed on the semi-transparent or transparent electrode and formed of a light transmitting material. In the OLED, resonators are formed between the reflective electrode and the semi-transparent or transparent electrode, between the reflective electrode and the top surface of the optical path control layer, and between the top surface of the semi-transparent or transparent electrode and the top surface of the optical path control layer, respectively, therefore, as an optical mode output to the exterior of the optical path control layer, at least two multiple resonances are generated.
摘要:
Each of thin film deposition assemblies of a thin film deposition apparatus includes: a deposition source that includes a deposition material; a deposition source nozzle unit arranged at a side of the deposition source and including a plurality of deposition source nozzles arranged in a first direction; a patterning slit sheet arranged opposite to the deposition source nozzle unit and having a plurality of patterning slits arranged in the first direction; and a barrier plate assembly including a plurality of barrier plates arranged in the first direction, the barrier plate assembly being arranged between the deposition source nozzle unit and the patterning slit sheet. The thin film deposition apparatus and the substrate are separated from each other and are movable relative to each other. The deposition material includes a material to produce the thin film of a red (R), green (G) or blue (B) emission layer, or an auxiliary layer.
摘要:
An organic light emitting display apparatus includes a substrate, a color filter layer on the substrate, a transflective reflective layer on the color filter layer, the transflective reflective layer being configured to partly transmit and partly reflect visible light, a first electrode on the transflective reflective layer, an intermediate layer on the first electrode, the intermediate layer including an organic emission layer, a second electrode on the intermediate layer, and an optical path control layer (OPCL) between the transflective reflective layer and the first electrode, the OPCL including an insulating material and being configured to control a path of light generated in the intermediate layer.