Abstract:
Time filtering channel estimates in a wireless communication system, such as an Orthogonal Frequency Division Multiplex (OFDM) system, can be used to improve the quality of channel estimates. The characteristics of an optimal channel estimate time filter can depend on the manner in which the channel estimate is determined as well as the time correlation of channel estimates. A receiver can implement an adaptive time filter for channel estimates in which the time filter response can vary based on channel estimate parameters. The channel estimate parameters can include the manner of determining channel estimates, a time correlation of channel estimates, and an estimated Doppler frequency. The time filter response can be varied continuously over a range of responses or can be varied discretely over a predetermined number of time filter responses.
Abstract:
Systems and methods are provided for determining and applying timing corrections in a digital communications system. In an aspect, a timing correction method is provided for a multi-carrier system. This includes aligning two or more symbols with respect to each other from a symbol subset in order to account for timing differences between the symbols. The symbol alignment is first carried out to generate channel estimates for data demodulation. The channel estimates, thus generated, along with the timing alignment information are in turn used for determining timing corrections-to be applied to future symbols.
Abstract:
Methods and apparatus for time tracking using assistance from TDM pilots in a communication network. In an aspect, a method is provided for time tracking in a device operating on a communication network, wherein the device performs a time tracking algorithm. The method includes determining a delay spread, and modifying at least one parameter used by the time tracking algorithm based on the delay spread. In another aspect, an apparatus is provided for time tracking in a device operating on a communication network, wherein the device performs a time tracking algorithm. The apparatus includes computation logic for determining a delay spread, and control logic for modifying at least one parameter used by the time tracking algorithm based on the delay spread.
Abstract:
Systems and methods are provided for the transmission of waveforms to aid channel estimation, timing synchronization, and AGC bootstrapping in a wireless network. The method includes inserting at least one TDM pilot symbol located at a transition between wide area and local area waveforms to facilitate decoding of the transmission block.
Abstract:
A methodology for transmitter identification for a single frequency network is provided using a single CW tone. The tone can be transmitted outside the transmitter's active band. It is possible to arrive at significant overlap between the tone coverage area and the coverage area of a neighboring transmitter without disturbing the operations by picking the tone location and power appropriately.
Abstract:
Systems and methods are provided for the transmission of waveforms. The method includes inserting at least one TDM pilot symbol located at a transition between wide area and local area waveforms to facilitate decoding of the transmission block.
Abstract:
Methods and apparatus for noise estimation in a communication system. In an aspect, a method for noise and interference estimation is provided. The method includes identifying one or more unmodulated subcarriers in a received waveform, processing the one or more unmodulated subcarriers to produce a demodulated output, and determining a noise variance based on the demodulated output. In another aspect, an apparatus for providing a noise and interference estimation is provided. The apparatus includes selection logic configured to identify one or more unmodulated subcarriers in a received waveform, a processor configured to demodulate the one or more unmodulated subcarriers to produce a demodulated output, and variance determination logic configured to determine a noise variance based on the demodulated output.
Abstract:
Methods and apparatus for adapting a channel estimation scheme in a transceiver in a communication system are disclosed to adapt channel estimation to the transceiver environment, particularly for high Doppler environments. The disclosed methods and apparatus effect determination of an estimate of a power delay profile of a channel or a time correlation of the channel, or both. A channel estimation scheme is then determined based on at least one of the determined power delay profile and time correlation of the channel. By basing determination of a channel estimation scheme on the power delay profile and/or the time correlation of the channel, the channel estimation scheme is adapted to the particular environment of the transceiver by accounting for the delay spread of the channel and/or the speed of the transceiver.
Abstract:
To allow a receiving entity to derive a longer channel estimate while limiting overhead, a transmitting entity transmits a pilot on different groups of subbands in different time intervals. N subbands in the system are arranged into M non-overlapping groups. Each group includes P=N/M subbands that are uniformly distributed across the N subbands. The transmitting entity transmits the pilot on a different subband group in each time interval, and selects all M subband groups in M time intervals based on a pilot staggering pattern. The receiving entity derives (1) an initial impulse response estimate with P channel taps based on the pilot received on one subband group and (2) two longer impulse response estimates with different lengths used for data detection and time tracking. Each longer impulse response estimate may be derived by filtering initial impulse response estimates for a sufficient number of subband groups using a time-domain filter.
Abstract:
To allow a receiving entity to derive a longer channel estimate while limiting overhead, a transmitting entity transmits a pilot on different groups of subbands in different time intervals. N subbands in the system are arranged into M non-overlapping groups. Each group includes P=N/M subbands that are uniformly distributed across the N subbands. The transmitting entity transmits the pilot on a different subband group in each time interval, and selects all M subband groups in M time intervals based on a pilot staggering pattern. The receiving entity derives (1) an initial impulse response estimate with P channel taps based on the pilot received on one subband group and (2) two longer impulse response estimates with different lengths used for data detection and time tracking. Each longer impulse response estimate may be derived by filtering initial impulse response estimates for a sufficient number of subband groups using a time-domain filter.