Abstract:
A light source apparatus and a driving apparatus thereof are provided. The driving apparatus includes a first node, a second node, a clock synchronization unit, a control unit, a switch unit, and a feedback unit. The driving apparatus receives an AC voltage through the first and the second nodes. The clock synchronization unit converts the AC voltage into a clock synchronization signal. The control unit converts a preset brightness value into a driving current, outputs an adjusting signal according to a timing of the clock synchronization signal, and modulates a pulse width of the adjusting signal according a feedback signal. The switch unit determines whether or not the AC voltage is provided to the light source module according to a control of the adjusting signal. The feedback unit detects a load state of the light source module, and outputs the feedback signal to the control unit according a detection result.
Abstract:
Method and device for light signal reception. This device can selectively execute a comparison mode or a gain mode. In the device, a transmitter transmits a light beam to a target. A receiver receives the light beam reflected from the target and outputs a corresponding received signal. In the comparison mode, it is determined whether a pulse in the received signal is higher than a reference voltage level. When the pulse is higher the reference voltage level, the pulse is outputted. The gain mode is executed and the received signal is amplified and output when no pulse is higher than the reference voltage level in the received signal. The method and device of the present invention can be applied to range finders, the comparison mode is executed during short-distance measurement and the gain mode is executed during long-distance measurement thereby measuring the target distance from several meters to a thousand meters.
Abstract:
A light source driving apparatus to drive at least one light source module includes a switch unit for coupling in series with an AC power source and the light source module; a clock synchronization unit for coupling to the AC power source and to provide a clock synchronization signal in accordance with an AC voltage of the AC power source; a control unit coupled to receive the clock synchronization signal and to provide to the switch unit an adjusting signal according to a timing of the clock synchronization signal; and a feedback unit coupled to the control unit and to detect a load state of the light source module, the feedback unit configured to provide to the control unit a feedback signal having a value representative of the detected load state of the light source module. The control unit is configured to modulate a pulse width of the adjusting signal according to the feedback signal and a preset brightness value of the light source module, the switch unit responsive to the adjusting signal to open and close to apply the AC voltage to the light source module in accordance with the modulated pulse width.
Abstract:
Camera systems and methods with vibration compensation. The system comprises a first sensor, a second sensor, and a processing module. The first sensor detects an angle variation of a movement of a camera device to generate first sensed data. The second sensor detects a position movement of an image sensor of the camera device to generate second sensed data. The processing module takes the first derivative of the second sensed data, and calculates control information according to the first sensed data and the differential of the second sensed data. The processing module enables a drive device to adjust the position of the image sensor based on the control information.