Abstract:
A filter system for filtering water and/or wastewater which includes an underdrain system having a plurality of laterals that are anchored to the floor of a filter by a hold-down assembly. Preferably, the hold-down assembly does not rely on grout or other substance that is applied in a viscous or semi-viscous state and subsequently hardened as the primary means for connecting the underdrain laterals to the floor of the filter. Preferably, the hold-down assembly includes hold-down clips that can move relative to an anchor assembly and corresponding underdrain blocks so that the hold-down clips can cooperate with any desired portion of the corresponding underdrain blocks.
Abstract:
A system and method for uniformly distributing fluids (e.g., washing and in-service) through a filter bed of a filter. The system and method of the present invention can be used with any type of filter that uses media to remove impurities from a fluid. The filter bed can include one or more layers of media. The media can be natural (e.g., sand, gravel, anthracite, etc.) or can be fabricated (e.g., plastic). The filter media can be supported by one or more layers of gravel. Alternatively, the filter media can be supported by a porous plate or other support designed to replace the gravel layers. The present invention includes a system having a distribution member configured to uniformly distribute a fluid through a filter bed of a filter. Preferably, the distribution member can be readily installed by relatively unskilled labor in both existing filters and new filters. The distribution member is preferably configured to occupy only a small percentage of space in a distribution chamber (e.g., a flume). In retrofit applications, the design of the distribution member is such that no significant alteration of the distribution chamber or fluid velocity is necessary. Preferably, the distribution member includes one or more plates extending substantially the length of the distribution chamber. The plate or plates are designed to create a uniform pizeometric head at each lateral extending from the distribution chamber regardless of how far a given lateral is from the fluid inlet in the distribution chamber. In a most preferred embodiment, a single plate is used. The design of the single plate allows it to be mass produced and yet still be used in numerous different environments and flow conditions.
Abstract:
An underdrain system having a bottom formed of concrete. The concrete bottom includes a plurality of generally cone shaped depressions formed therein. A porous plate is operably associated with at least one of the generally cone shaped depressions. The underdrain system further includes an insert having at least one distribution orifice for distributing the flow. The insert is positioned beneath the porous plate and at least partially within the at least one generally cone shaped depression. The insert insures thorough distribution of any fluid passing through the porous plate, i.e., the fluid is evenly distributed over the entire surface area of the porous plate. In an alternative embodiment, an underdrain system is provided including a bottom formed of concrete. The bottom has a plurality of generally cone shaped depressions formed therein. A porous plate is operably associated with at least one of the generally cone shaped depressions. The underdrain system further includes a removable anchoring member for removably anchoring the porous plate to the concrete bottom without penetrating any surface of the concrete bottom.
Abstract:
A modular filter system and a method of repairing and/or replacing one or more components thereof. The modular filter system includes a traveling backwash hood assembly and a plurality of filter cells having media contained therein. The traveling backwash hood assembly includes a hood and a baffle assembly. Preferably, the hood has at least one opening formed therein and a cover plate operably associated with the at least one opening. The baffle assembly includes a plurality of baffles for directing the flow of fluid. The baffle assembly is detachably connected to the hood to permit the baffle assembly to be moved relative to the hood to permit an individual to readily gain access to the baffle assembly to repair or replace one or more components thereof.
Abstract:
An improved underdrain block for an underdrain system supporting a filter media bed in a liquid filtration system is provided. The underdrain blocks are preferably made of an extrudable polymeric material that is extruded in relatively long sections to provide light weight, strong, easily manufactured underdrain systems having a lower profile than prior art underdrain blocks. The underdrain block comprises an upper wall, side walls, a lower wall, at least one lateral member between the upper wall and the lower wall, at least two chambers within the underdrain block, each chamber being defined by the lateral member, a plurality of upper orifices in the upper wall of the underdrain block, and a plurality of internal orifices in the lateral member. The underdrain block is substantially greater in longitudinal length than a longitudinal distance between the upper orifices. In one embodiment, the underdrain block has rails situated on the upper wall for engaging extruded members, which in turn, have receiving recesses for receiving a layer of porous filter media. In another embodiment, the underdrain block further comprises an air nozzle for achieving an improved distribution of air through a filter bed during air backwashing.
Abstract:
An apparatus for removing material collected in a material collection container having a floor and at least one substantially vertically extending wall. The apparatus includes a material removal assembly for removing material collected in the material collection container. The material removal assembly includes a first conduit and a second conduit. The first conduit is in telescoping relationship with the second conduit to permit the first conduit to move relative to the second conduit. The first conduit and the second conduit each have a longitudinal axis. The material removal assembly further includes at least one material removal header configured to receive material accumulating on the floor of the material collection container. The material removal assembly is preferably configured to enhance numerous aspects of the sludge removal process.
Abstract:
A system and method for uniformly distributing fluids (e.g., washing and in-service) through a filter bed of a filter. The system and method of the present invention can be used with any type of filter that uses media to remove impurities from a fluid. The filter bed can include one or more layers of media. The media can be natural (e.g., sand, gravel, anthracite, etc.) or can be fabricated (e.g., plastic). The filter media can be supported by one or more layers of gravel. Alternatively, the filter media can be supported by a porous plate or other support designed to replace the gravel layers. The present invention includes a system having one or more distribution members configured to uniformly distribute a fluid through a filter bed of a filter. Preferably, the one or more distribution members can be readily installed by relatively unskilled labor in both existing filters and new filters. In a preferred embodiment, the one or more distribution members are configured to extend into at least a portion of an underdrain from above the underdrain. In retrofit applications, the preferred design of the one or more distribution members is such that no significant alteration of the distribution chamber, underdrain or fluid velocity is necessary.
Abstract:
An apparatus for removing material collected in a material collection container having a floor and at least one substantially vertically extending wall. The apparatus includes a material removal assembly for removing material collected in the material collection container. The material removal assembly includes a first conduit and a second conduit. The first conduit is in telescoping relationship with the second conduit to permit the first conduit to move relative to the second conduit. The first conduit and the second conduit each have a longitudinal axis. The material removal assembly further includes at least one material removal header configured to receive material accumulating on the floor of the material collection container. The material removal assembly is preferably configured to enhance numerous aspects of the sludge removal process.