Abstract:
Broadly speaking, the embodiments of the present invention fill the need by providing an improved chamber particle source identification mechanism. The in-situ chamber particle source identification method and apparatus can greatly shorten the time it takes to identify chamber particle source, which could improve the chamber throughput for production system. The method and apparatus can also be used to test components for particle performance during chamber engineering development stage. In one embodiment, an in-situ chamber particle monitor assembly for a semiconductor processing chamber includes at least one laser light source. The at least one laser light source can scan laser light in a chamber process volume within the processing chamber. The in-situ chamber particle monitor assembly also includes at least one laser light collector. The at least one laser light collector can collect laser light emitted from the at least one laser light source. The chamber particle monitor assembly also includes an analyzer external to the processing chamber that analyzes signals representing the laser light collected by the at least one laser light collector to provide chamber particle information.
Abstract:
A motor is described that includes a motor enclosure, a motor-bearing assembly, a motor control unit, and a mid shield. The motor-bearing assembly is configured for placement within the motor enclosure, and a portion of the motor control unit is configured for placement within the motor enclosure. The mid shield is configured for placement within the motor enclosure between the motor control unit and the motor-bearing assembly. The mid shield is further configured to allow removal of the motor control unit without disturbance of the motor-bearing assembly.
Abstract:
A connector assembly configured to engage a motor connector having a plurality of contacts is described. The connector assembly includes a plurality of receptacle terminals and first and second housing portions each having channels formed therein for insertion of the receptacle. The channels include an end further including a slot formed therein where the channels are configured to engage respective sides of the receptacle terminals along their longitudinal axis. The slots define a rectangular opening for insertion of a respective tab terminal into each respective receptacle terminal. Each receptacle terminal includes a wire insulation engaging segment, a wire engaging segment, and a receptacle portion.
Abstract:
The present invention comprises a hardware/software combination that is configured to provide for the optimization of the printed output transmitted by a facsimile machine. By generating and comparing a baseline cover sheet quality score with a companion document quality score, optimization decisions can be made to enhance the quality of facsimile transmissions. Optimization is also enhanced by recognizing the type of facsimile machine being used and providing the optimal configuration settings for the facsimile machine. In the most preferred embodiments of the present invention, the possible settings for multiple facsimile machines are stored in a database, along with the optimal settings for each of the facsimile machines. To further enhance the results of a facsimile transmission, a database of printers may also be consulted. By utilizing the best possible output from a printer, combined with the optimal settings for a fax machine, the optimal results for a facsimile transmission can be obtained. Additionally, the use of bar-coded identification for facsimile transmission provides a method of automating the optimization process, thereby increasing efficiency by reporting the results of the optimization process.
Abstract:
Embodiments of the present invention provide an apparatus and a method for chamber particle source identification. The chamber particle source identification method and apparatus can greatly shorten the time it takes to identify chamber particle source(s). In one embodiment, a chamber particle monitor assembly for a processing chamber is provided. The chamber particle monitor assembly includes at least one laser light source, which can scan laser light in a chamber process volume within the processing chamber. The chamber particle monitor assembly also includes a plurality of laser light collectors, which can collect laser light emitted from the at least one laser light source continuously to monitor particle performance within the processing chamber. The plurality of laser light collectors are placed in the processing chamber such that none of the plurality of laser light collectors share a common axis. The chamber particle monitor assembly further includes an analyzer that analyzes signals representing the laser light collected by the plurality of laser light collectors to provide chamber particle information. The plurality of laser light collectors enables construction of three-dimensional (3-D) images of particle distribution within the processing volume.
Abstract:
Embodiments of the present invention address deficiencies of the art in respect to network services protocol implementation configuration and provide a method, system and computer program product for platform independent configuration of multiple network services protocol implementations. In one embodiment of the invention, a method for configuring a network services protocol implementation can include configuring a platform independent configuration for a network services protocol implementation. Thereafter, a target node can be selected to receive a deployment of the network services protocol implementation and the configured platform independent configuration can be transformed into a platform specific configuration for the target node. Finally, the transformed platform specific configuration can be deployed onto the target node.
Abstract:
A method, system and computer program product for predictively configuring a security services protocol implementation can be provided. The method can include providing a set of network topology descriptions and determining a selection of one of the network topology descriptions. The method further can include identifying configuration settings corresponding to the selection and applying the configuration settings to the security services protocol implementation. For instance, applying the configuration settings to the security services protocol implementation can include selecting encapsulation mode and routing settings for the security services protocol implementation.
Abstract:
A motor is described that includes a motor enclosure, a mid shield, and a motor control unit having a chassis and a plurality of components mounted on the chassis. The motor enclosure includes a plurality of protrusions extending into the motor enclosure. The mid shield is configured for placement within the motor enclosure and configured to engage the protrusions. The mid shield is configured with a plurality of open spaces. The chassis of the motor control unit is configured to engage an end of the motor enclosure and the motor control unit is configured such that at least a portion of the components extend into the motor enclosure and the spaces in the mid shield.
Abstract:
An implementation of a technology is described herein for a fusing system comprising a heating assembly comprising a thermally self-regulating heating element.