Abstract:
An error signal detecting apparatus for an optical pickup employing a hologram grating, including a sensing lens for focusing light reflected from a recording medium, a hologram grating having first through fourth pattern regions arranged clockwise in a 2.times.2 matrix arrangement, for diffracting light incident from the sensing lens in different directions, wherein the first through fourth pattern regions a, b, c and d are formed such that a first focus of the +1st-order diffracted beams diffracted by the first and third pattern regions is relatively farther from the sensing lens than a second focus of the +1st-order diffracted beams diffracted by the second and fourth pattern regions, a photodetector disposed between the first and second focuses and having first through fourth light receiving units, for receiving the beams diffracted by the first through fourth pattern regions and independently photoelectrically converting the same, and a signal operation unit for detecting a focus error signal and/or a track error signal from detection signals of the light receiving parts. The error signal detecting apparatus can suppress generation of an offset of a focus error signal due to a change in the wavelength of a light source and an offsets of the focus error signal and track offset signal due to deviations of the photodetector.
Abstract:
An optical pickup device corresponding to an optical recording medium having a plurality of recording layers, and an optical drive using the device are provided. The optical pickup device includes a collimator lens disposed between an object lens and a light source. The collimator lens adjusts a focal length with respect to the optical recording medium, and the object lens focuses light passing through the collimator lens, on the optical recording medium. The object lens is optically optimized for an upper or second-upper recording layer of the optical recording medium.
Abstract:
A magnetic circuit and an optical recording and/or reproducing apparatus employing the magnetic circuit, having: a magnet with first and second magnetic portions adjacent to each other and opposite in polarity, and third and fourth magnetic portions surrounding the first and second magnetic portions, respectively, and have opposite polarities to the first and second magnetic portions, respectively; and at least one of a tracking coil unit or a focus coil unit. The tracking coil unit has first through third tracking coils arranged in a tracking direction so that each tracking coil interacts with two of the first through fourth magnetic portions. The focus coil unit has first through fourth focus coils, two of which are disposed in a focus direction to interact with the first and third magnetic portions, and the remaining two of which are disposed in the focus direction to interact with second and fourth magnetic portions.
Abstract:
An optical pickup, photodetector, and optical drive adopting the optical pickup are provided. The optical pickup may include a light emitting system having a plurality of light sources corresponding to a plurality of mediums a light receiving system including a photodetector for converting light reflected from a medium into an electrical signal. The photodetector may include first and second light receiving sensors corresponding to the plurality of mediums, each of the first and second light receiving sensors comprising a plurality of regions, each region comprising a plurality of sectors. The plurality of regions of the first and second light receiving sensors may include shared sectors that are shared by the first and second light receiving sensors and exclusive sectors that are exclusively used in the first light receiving sensor or the second light receiving sensor.
Abstract:
An optical pickup device corresponding to an optical recording medium having a plurality of recording layers, and an optical drive using the device are provided. The optical pickup device includes a collimator lens disposed between an object lens and a light source. The collimator lens adjusts a focal length with respect to the optical recording medium, and the object lens focuses light passing through the collimator lens, on the optical recording medium. The object lens is optically optimized for an upper or second-upper recording layer of the optical recording medium.
Abstract:
An optical pickup apparatus and an optical recording/reproducing system including the same, the optical pickup apparatus includes at least two optical systems for different types of optical recording media, one of objective lenses of the optical systems being offset from a central line of the optical recording medium, wherein the optical system including the offset objective lens having a diffraction grating diffracting light emitted from a light source to form a main beam and sub-beams, wherein the diffraction grating includes first and second diffraction regions having different grating patterns arranged alternately thereon, and a center of each sub-beam is arranged at a boundary of the first and second diffraction regions of the diffraction grating, and a center of the diffraction grating and an optical axis of the light source are adjusted to be coincided with each other, preventing generation of an alternating current in a Push-Pull signal of the sub-beams.
Abstract:
An optical pickup actuator including a multi-conductive suspension. The optical pickup actuator may include a base, a holder fixed to the base, a bobbin holding an object lens and having a plurality of driving coils, and a plurality of suspensions connected between the bobbin and the holder and movably supporting the bobbin toward the holder, wherein each of the suspensions may be a multi-conductive suspension including a flexible substrate and a plurality of wires, formed on the flexible substrate, applying currents to the coils.
Abstract:
A heat source having a device emitting heat, a case protecting and supporting the device, and a thermoelectric element absorbing the heat emitted from the device and dissipating the heat to an outside.
Abstract:
In order to improve the frequency characteristic of a laser power monitor device and the precision of laser power control when low-speed recording is performed, there is provided a laser power monitor device for an optical recording and/or reproducing apparatus, the laser power monitor device including a photo diode unit to receive part of a light emitted from a laser diode and output a current proportional to optical power, and a monitor circuit to receive the current output from the photo diode unit, convert the received current into a voltage, and outputs the voltage to an automatic laser power control circuit, and the photo diode unit includes a plurality of photo diodes connected to the monitor circuit to supply current to the monitor circuit. The laser power monitor device further includes a switch unit, wherein the switch unit is located between the photo diode unit and the monitor circuit to receive a signal on a current recording speed and switch so that the number of photo diodes supplying current to the monitor circuit is reduced as the recording speed is increased.
Abstract:
An optical pickup, optical recording and/or reproducing apparatus including the same, and a method of realizing a tracking servo that is compatible between different types of optical data storage media. The optical recording and/or reproducing apparatus splits light from a light source into a main beam and four or more sub beams symmetrical with respect to the main beam, which are then emitted on an optical data storage medium, wherein the four or more sub beams include two first sub beams located close to the main beam and two second sub beams located away from the main beam, and detects a tracking error signal by a differential push-pull (DPP) method using detection signals of the main beam and the pair of first sub beams and of the main beam and the pair of second sub beams for ±R/RW and RAM type optical data storage media, respectively. The optical pickup and optical recording and/or reproducing apparatus makes it possible to realize a tracking servo that is compatible between ±R/RW and RAM type optical data storage media having different track pitch dimensions based on DPP.