Abstract:
A system may include a Graphics Processing Unit (GPU) and a Field Programmable Gate Array (FPGA). The system may further include a bus interface that is external to the FPGA, and that is configured to transfer data directly between the GPU and the FPGA without storing the data in a memory of a central processing unit (CPU) as an intermediary operation.
Abstract:
A content addressable memory (CAM) architecture comprises two components, a small, fast on-chip cache memory that stores data that is likely needed in the immediate future, and an off-chip main memory in normal RAM. The CAM allows data to be stored with an associated tag that is of any size and identifies the data. Via tags, waves of data are launched into a machine's computational hardware and re-associated with related tags upon return. Tags may be generated so that related data values have adjacent storage locations, facilitating fast retrieval. Typically, the CAM emits only complete operand sets. By using tags to identify unique operand sets, computations can be allowed to proceed out of order, and be recollected later for further processing. This allows greater computational speed via multiple parallel processing units that compute large sets of operand sets, or by opportunistically fetching and executing operand sets as they become available.
Abstract:
The use of a configuration-based execution model in conjunction with a content addressable memory (CAM) architecture provides a mechanism that enables performance of a number of computing concepts, including conditional execution, (e.g., If-Then statements and while loops), function calls and recursion. If-then and while loops are implemented by using a CAM feature that emits only complete operand sets from the CAM for processing; different seed operands are generated for different conditional evaluation results, and that seed operand is matched with computed data to for an if-then branch or upon exiting a while loop. As a result, downstream operators retrieve only completed operands. Function calls and recursion are handled by using a return tag as an operand along with function parameter data into the input tag space of a function. A recursive function is split into two halves, a pre-recursive half and a post-recursive half that executes after pre-recursive calls.