Abstract:
A rotor comprises a first rotor lamination and a second rotor lamination. The first rotor lamination and the second rotor lamination are configured for defining, when joined into rotor assembly, a central axis of rotation and a plurality of interior magnet pockets disposed symmetrically about the central axis of rotation, each pocket of the plurality of interior magnet pockets is configured for housing and retaining a permanent magnet. A method of forming a rotor comprises forming a first rotor lamination and a second rotor lamination, rotating the second rotor lamination about an axis of symmetry of the second rotor lamination; and mating the first rotor lamination to the second rotor lamination such that a first notch of the first rotor lamination is disposed adjacent to the first notch of the second rotor lamination.
Abstract:
A control system for an electric power steering system is provided. The system includes a motor and a control module in communication with the motor. The control module provides a compensation command to the motor. The control modules includes a frequency dependent damping module for determining a frequency dependent damping (FDD) coefficient based on a base assist command and a vehicle speed. The control module includes a coefficient module for determining a plurality of filter coefficients. The filter coefficients are based on the FDD coefficient, the vehicle speed, and an inertia compensation coefficient. The control module includes a filter module for determining the compensation command based on the plurality of filter coefficients.
Abstract:
Systems and methods for controlling a vehicle steering system are provided. In one exemplary embodiment, the method includes receiving a desired front road wheel angle signal at a controller. The desired front road wheel angle signal is indicative of a desired front road wheel angle of vehicle wheels. The method further includes receiving a parking assist request signal at the controller indicating a parking assist operational mode is desired. The method further includes generating a desired motor torque signal for controlling a power steering motor in the parking assist operational mode utilizing the controller, based on the desired front road wheel angle signal and the parking assist request signal.
Abstract:
Systems and methods for determining an absolute rotational position of the vehicle handwheel are provided. In one exemplary embodiment, a method includes determining a slope value based on the delta torque value associated with the vehicle steering system and the delta rotational position value associated with a vehicle handwheel. The method further includes setting an absolute position value indicating the absolute position of the vehicle handwheel equal to a predetermined steering travel limit of the vehicle handwheel when the slope value is within a predetermined slope range.
Abstract:
Systems and methods for controlling a vehicle steering system are provided. In one exemplary embodiment, the method includes receiving a desired front road wheel angle signal at a controller. The desired front road wheel angle signal is indicative of a desired front road wheel angle of vehicle wheels. The method further includes receiving a parking assist request signal at the controller indicating a parking assist operational mode is desired. The method further includes generating a desired motor torque signal for controlling a power steering motor in the parking assist operational mode utilizing the controller, based on the desired front road wheel angle signal and the parking assist request signal.
Abstract:
An all wheel steering system for a vehicle comprising a controller having a first input for receiving a signal from a hand wheel position sensor, a second input for receiving a signal from a vehicle speed sensor, and a third input for receiving a signal that varies depending upon whether a trailer is hitched the vehicle. The controller generates an output for controlling a rear wheel steering actuator. The output varies as a function of the first, second, and third inputs such that when a trailer is hitched to the vehicle the out-of-phase rear steer amount at low speeds is reduced and the in-phase rear steering amount at high speeds is increased.
Abstract:
A method of estimating friction in a steering system controlled by a control module is provided. The method includes performing by the control module, estimating a steering load gain; estimating a steering load hysteresis; and determining friction based on the steering load gain, the steering load hysteresis, and a reference model.
Abstract:
A control system for an electric power steering system is provided. The system includes a motor and a control module in communication with the motor. The control module provides a compensation command to the motor. The control modules includes a frequency dependent damping module for determining a frequency dependent damping (FDD) coefficient based on a base assist command and a vehicle speed. The control module includes a coefficient module for determining a plurality of filter coefficients. The filter coefficients are based on the FDD coefficient, the vehicle speed, and an inertia compensation coefficient. The control module includes a filter module for determining the compensation command based on the plurality of filter coefficients.
Abstract:
Systems and methods for controlling a vehicle steering system are provided. In one exemplary embodiment, the method includes receiving a desired front road wheel angle signal at a controller. The desired front road wheel angle signal is indicative of a desired front road wheel angle of vehicle wheels. The method further includes receiving a parking assist request signal at the controller indicating a parking assist operational mode is desired. The method further includes generating a desired motor torque signal for controlling a power steering motor in the parking assist operational mode utilizing the controller, based on the desired front road wheel angle signal and the parking assist request signal.
Abstract:
A method, system, and computer program product for calculating a torque overlay command in a steering control system is provided. The method includes receiving a current hand wheel angle, receiving a change in vehicle yaw moment command, and calculating a lateral force in response to the change in vehicle yaw moment command. The method also includes determining a new tire side slip angle from the lateral force and calculating a commanded hand wheel angle from the new tire side slip angle. The method further includes calculating an error signal as a difference between the commanded hand wheel angle and the current hand wheel angle, and generating a torque overlay command from the error signal.