Abstract:
A control for an automatic washer to operate the washer through a wash cycle determined based upon various soils and stains in the substrate load to be washed with a wash liquor in a wash zone of the washer. The control has a plurality of stain/soil type entrées, which can be at least one of selected and detected, and cleaned with a particular wash cycle. The control has dispensing control over at least one wash liquor additive. The control has operational control over activators and deactivators for members of the additives group. The control has operational control over the particular wash cycles using the dispensing control to dispense additives to the wash liquor at selected times during the wash cycle and operating the activators and deactivators at selected times during the wash cycle.
Abstract:
A fabric treatment appliance comprises a cabinet; a laundry treatment chamber located in the cabinet for receiving fabric; an automatic laundry processing system in the cabinet for providing at least one of mechanical energy, thermal energy, and chemical energy to the fabric in the laundry treatment chamber to perform a laundry treatment process; and a manual treatment system incorporated into the cabinet.
Abstract:
A wash cycle for a clothes washer, the clothes washer having a wash zone defined within a rotating drum having an outer wall, for receiving a load of fabric. The steps include dispensing a volume of a first wash liquor to the wash zone, rotating the drum to move the fabric load toward the outer wall and recirculating the first wash liquor through the fabric load and wash zone, all during a first period of time. The fabric load is then flexed during a second period of time. The cycle continues with the steps of dispensing a volume of a second, different wash liquor to the wash zone, rotating the drum to move the fabric load toward the outer wall and recirculating the second liquor through the fabric load and wash zone during a third period of time. One of the two wash liquors is an oxidizing agent wash liquor. Then the remainder of the wash cycle is completed.
Abstract:
A wash cycle is provided for a clothes washer, the clothes washer having a wash zone for receiving a substrate load to be cleaned. The wash cycle includes a step of providing a wash liquor for applying to the substrate load. Another step is loading the wash zone with the substrate load. Another step is mixing metal ions with an inactive bleaching agent as catalyst agents to catalyze an activation reaction to produce an active bleaching agent. Another step is combining the active bleaching agent with the wash liquor. Another step is applying the wash liquor with the active bleaching agent to the substrate load. Another step is capturing the metal ions prior to a disposal of the wash liquor.
Abstract:
Methods for washing fabric loads without water or using water only as a co-solvent are disclosed. One method of non-aqueous clothes washing includes the steps of disposing clothing in a wash container, delivering a wash liquor to the fabric load, the wash liquor comprising a substantially non-reactive, non-aqueous, non-oleophilic, apolar working fluid and at least one washing additive, applying mechanical energy to the clothing and wash liquor for a sufficient amount of time to provide fabric cleaning and, thereafter, substantially removing the wash liquor from the fabric load. The working fluid may be selected from the group consisting of perfluorocarbons, hydrofluoroethers, fluorinated hydrocarbons and fluoroinerts.
Abstract:
A modular system according to one embodiment of the invention for treating a fabric load comprises a first module and a second module. The first module can include a chamber having an interior for holding a fabric load, and the second module can have at least one of a fluid delivery system, a fluid removal system, and a fluid recycling system. The modular system can further include conduits for coupling the systems of the second module with the first module.
Abstract:
A modular system according to one embodiment of the invention for treating fabric load comprises a first module and a second module. The first module can include a chamber having an interior for holding a fabric load, and the second module can have at least one of a fluid delivery system, a fluid removal system, and a fluid recycling system. The modular system can further include conduits for coupling the systems of the second module with the first module.
Abstract:
A substrate treating appliance utilizing a plurality of different chemistries for different cycles or different wash loads with a plurality of receptacles for receiving a plurality of cartridges containing the different chemistries. Each receptacle has one half of a lock and key connection arrangement providing a unique interconnection configuration at each receptacle, relative to the remaining receptacles, permitting only a selected type of chemistry cartridge to be accepted at a particular receptacle. A connection effected between the cartridge and the receptacle occurs by rotation of the cartridge relative to the receptacle between an insertion orientation and a locking orientation. Each receptacle is shaped to receive a cylindrical mouth wall of a particular type of chemistry cartridge. Each receptacle may also be uniquely sized, relative to the remaining receptacles, to accept only a selected type of chemistry cartridge. The plurality of receptacles may be arranged adjacent to one another with each cartridge having a configuration that prevents insertion of a cartridge into a receptacle unless every cartridge located in an adjacent receptacle is rotated to the locking orientation.