Abstract:
A network device is configured to receive a registration message from a private user device including a private internet protocol (IP) address associated with the private user device. A public IP address and discrete port number are assigned to the private user device and private IP address and stored in an incoming call table. The registration message is translated to include the public IP address and discrete port number. The registration message is forwarded to a proxy server for registration. An incoming call invitation message is received from a public user device, where the call invitation message is directed to the public IP address and discrete port number associated with the private user device. The call invitation message is translated to include the private IP address associated with the private user device based on the received public IP address and discrete port number and the incoming call table. The call invitation message is forwarded to the private user device.
Abstract:
The present invention provides a complex oxide catalyst whose general formula is Mo12VaCubWcXdYeOf/Z. reducing agent needs to be added into the catalyst during the preparation process of the active component of the catalyst and (or) molding process of the catalyst. Specifically, X is at least one selected from a group consisting of Nb, Sb, Sr, Ba and Te; Y is at least one selected from a group consisting of La, Ce, Nd, Sm and Cs; “a” is ranging from 2 to 8; “b” is ranging from 1 to 6; “c” is ranging from 0.5 to 5; “d” is ranging from 0.01 to 4; “e” is ranging from 0.01 to 4; f is determined by the oxidation state of the component element; Z is silicon powder; the reducing agent is C2˜C6 diol or polyol.
Abstract:
An access method is disclosed. The method includes: a mobile intelligent access point accesses a network through at least two wireless technologies; a User Equipment (UE) establishes a connection with the mobile intelligent access point; and the UE acquires access authentication from the network through the mobile intelligent access point. An access system and a mobile intelligent access point are further disclosed. With the disclosure, network authentication can be implemented to facilitate an operator to control the number of access users and to guarantee the network of the operator. Furthermore, a broadband mobile network is taken as a backhaul network, so as to reduce the reliability on a fixed network and improve the utilization of the broadband mobile network.
Abstract:
A wireless relay device includes: a first receiving channel configured to receive signals from a base station or from a base station and a terminal, a second receiving channel configured to receive signals from the terminal, a first sending channel configured to send signals to the base station or to the base station and the terminal, and a second sending channel configured to send signals to the terminal, and further includes a radio frequency control unit configured to, during communicating with the base station and the terminal, control the first receiving channel, the second receiving channel, the first sending channel and the second sending channel to use frequency bands in the following mode: receiving signals synchronously from the base station and the terminal in a first time interval, and sending signals synchronously to the base station and the terminal in a second time interval, wherein the third frequency band and the fifth frequency band are two guard bands between the working frequency band of a Frequency Division Duplex (FDD) system and the second frequency band serving as the working frequency band of a Time Division Duplex (TDD) system. The disclosure realizes the bidirectional relay communication between the base station and the terminal by using an idle guard band, increasing the utilization efficiency and the utilization flexibility of the guard band.
Abstract:
A network device is configured to receive a registration message from a private user device including a private internet protocol (IP) address associated with the private user device. A public IP address and discrete port number are assigned to the private user device and private IP address and stored in an incoming call table. The registration message is translated to include the public IP address and discrete port number. The registration message is forwarded to a proxy server for registration. An incoming call invitation message is received from a public user device, where the call invitation message is directed to the public IP address and discrete port number associated with the private user device. The call invitation message is translated to include the private IP address associated with the private user device based on the received public IP address and discrete port number and the incoming call table. The call invitation message is forwarded to the private user device.