Abstract:
An optical device has the structure to perform switching and attenuation of an optical beam with reduced polarization dependent loss (PDL). The optical device includes a birefringent displacer and two liquid crystal (LC) structures. The first LC structure is used to condition s-polarized components of the optical beam and the second LC structure is used to condition p-polarized components of the optical beam. Each LC structure has a separate control electrode so that the s-polarized components of the optical beam and the p-polarized components of the optical beam can be conditioned differently and in such a manner that reduces PDL. The optical device may be configured for processing multiple input light beams, such as the multiple wavelength channels de-multiplexed from a wavelength division multiplexed (WDM) optical signal.
Abstract:
An optical device has the structure to perform switching and attenuation of an optical beam with reduced polarization dependent loss (PDL). The optical device includes a birefringent displacer and two liquid crystal (LC) structures. The first LC structure is used to condition s-polarized components of the optical beam and the second LC structure is used to condition p-polarized components of the optical beam. Each LC structure has a separate control electrode so that the s-polarized components of the optical beam and the p-polarized components of the optical beam can be conditioned differently and in such a manner that reduces PDL. The optical device may be configured for processing multiple input light beams, such as the multiple wavelength channels de-multiplexed from a wavelength division multiplexed (WDM) optical signal.
Abstract:
An optical device performs both switching and attenuation of an optical beam, where the beam has an arbitrary combination of s-polarized and p-polarized components. The optical device includes a birefringent displacer, a liquid crystal (LC) beam-polarizing structure having six subpixels organized in a first polarization group and a second polarization group, a half-wave plate positioned for polarization control of the second polarization group, and a polarization separating and rotating assembly. The structure of the LC beam-polarizing structure allows for 1×2 switching and attenuation control with a single control signal. The optical device may be configured for processing multiple input light beams, such as the multiple wavelength channels de-multiplexed from a wavelength division multiplexed (WDM) optical signal.
Abstract:
An LC-based optical device compensates for differences in optical path lengths of polarization components of input beam. As a result, PDL and PMD of the optical device are reduced. The compensation mechanism may be a glass plate that is disposed in an optical path of a polarization component so that the optical path length of that polarization component can be made substantially equal to the optical path length of the other polarization component that traverses through a half-wave plate. Another compensation mechanism is a birefringent displacer that has two sections sandwiching a half-wave plate, wherein the two sections are of different widths and the planar front surface of the birefringent displacer can be positioned to be non-orthogonal with respect to the incident input light beam.