Abstract:
The present invention is a lens system used to relay the light from one region to another and increase the workable optical path length to make Wavelength Division Multiplexing (WDM) devices with a high port count. Inside the WDM device based on thin filters, collimators produce parallel light beams, and when the light path is over the collimator working distance, there can be substantial coupling loss. However, within the working distance, light can pass through the filters and collimators to follow the zig-zag pattern and eventually couple into a desired fiber without substantial insertion loss. A lens relay system can increase the optical path length to achieve high port count DWDM without fiber routing that takes more space and without a high coupling loss that is caused by multiple coupling between free space and fibers.
Abstract:
An LC-based optical device compensates for differences in optical path lengths of polarization components of input beam. As a result, PDL and PMD of the optical device are reduced. The compensation mechanism may be a glass plate that is disposed in an optical path of a polarization component so that the optical path length of that polarization component can be made substantially equal to the optical path length of the other polarization component that traverses through a half-wave plate. Another compensation mechanism is a birefringent displacer that has two sections sandwiching a half-wave plate, wherein the two sections are of different widths and the planar front surface of the birefringent displacer can be positioned to be non-orthogonal with respect to the incident input light beam.
Abstract:
A dynamic gain equalizer (DGE) includes: a mirror; an electrode; and a lever with a first end and a second end opposite to the first end, where the lever is capable of rotating about a fulcrum, where the lever rotates the first end toward the electrode when the electrode is charged such that the second end blocks a portion of a channel from reaching the mirror, where an unblocked portion of the channel is reflected by the mirror. By manipulating the charge on the electrode, the rotation of the lever is controlled, determining how much of the light is blocked by the lever. Each lever in an array can attenuate a channel or a group of channels of a composite optical signal by a different amount. The DGE provides a significant range of blockage and can be closely spaced. It provides ease in integrating channel monitoring into the DGE.
Abstract:
The invention teaches the design and assembly configurations for a free space DWDM device. Particularly, when using the free space DWDM devices for channel spacing less than 200 GHz, a small angle of incidence requires a longer optical path and adjustments must be made by folding the optical path or using double layers of optical components such as collimators to shorten the device and obtain the compact dimensions of the DWDM device. The design of the compact optical devices are implemented and assembled with various positioning and mounting methods for the newly designed optical base member, collimators, and filters to obtain the desired compact free space DWDM devices
Abstract:
An LC-based optical device compensates for differences in optical path lengths of polarization components of input beam. As a result, PDL and PMD of the optical device are reduced. The compensation mechanism may be a glass plate that is disposed in an optical path of a polarization component so that the optical path length of that polarization component can be made substantially equal to the optical path length of the other polarization component that traverses through a half-wave plate. Another compensation mechanism is a birefringent displacer that has two sections sandwiching a half-wave plate, wherein the two sections are of different widths and the planar front surface of the birefringent displacer can be positioned to be non-orthogonal with respect to the incident input light beam.
Abstract:
In the field of fiber optic communication, Wavelength Division Multiplexing (WDM) devices are used to combine wavelengths of light onto a single strand of fiber. To construct a WDM device, the optical components such as mirrors and filters must be cut in precise angles and positioned in parallel orientations to separate or combine wavelengths of light. The expenditure for implementation of free-space WDM devices can be prodigiously high and costly for compact devices. Techniques for designing optical components to manufacture a compact free-space WDM device including a surface mount assembly are disclosed. In addition to the common optical components used in a WDM device, a hybrid subassembly is included to assist in the orientation of optical components when manufacturing the compact device.
Abstract:
Described are tunable multiport optical filters that filter systems with many optical channels in a convenient and cost-effective manner. The tunable multiport optical filters of the invention are simple in design and have few optical components. The basic elements are a dispersion element and a rotating reflector. With properly arranged arrays of input and output optical fibers, individual wavelength components from a selected input beam are spatially separated and steered by the rotating reflector to selected output locations. The optical properties from the selected components may be measured by one or more photodetectors. The filters are also useful for selecting and routing optical signals.
Abstract:
Described are tunable multiport optical filters that filter systems with many optical channels in a convenient and cost-effective manner. The tunable multiport optical filters of the invention are simple in design and have few optical components. The basic elements are a dispersion element and a rotating mirror. With properly arranged arrays of input and output optical fibers, individual wavelength components from a selected input beam are spatially separated and steered by the rotating mirror to selected output locations. The optical properties from the selected components may be measured by one or more photodetectors. The filters are also useful for selecting and routing optical signals.
Abstract:
An LC-based optical device compensates for differences in optical path lengths of polarization components of input beam. As a result, PDL and PMD of the optical device are reduced. The compensation mechanism may be a glass plate that is disposed in an optical path of a polarization component so that the optical path length of that polarization component can be made substantially equal to the optical path length of the other polarization component that traverses through a half-wave plate. Another compensation mechanism is a birefringent displacer that has two sections sandwiching a half-wave plate, wherein the two sections are of different widths and the planar front surface of the birefringent displacer can be positioned to be non-orthogonal with respect to the incident input light beam.
Abstract:
Described are tunable multiport optical filters that filter systems with many optical channels in a convenient and cost-effective manner. The tunable multiport optical filters of the invention are simple in design and have few optical components. The basic elements are a dispersion element and a rotating reflector. With properly arranged arrays of input and output optical fibers, individual wavelength components from a selected input beam are spatially separated and steered by the rotating reflector to selected output locations. The optical properties from the selected components may be measured by one or more photodetectors. The filters are also useful for selecting and routing optical signals.