Abstract:
A lifting device for an armrest contains: a first fitting tube, a second fitting tube, and a holder. The first fitting tube includes a connector, a hollow part, a first channel, and a second channel. The first channel has a vertical section and a hollow section, the second channel has an operation area, multiple positioning teeth, multiple limitation areas, plural protrusions, and multiple defining recesses. The second fitting tube is hollow and includes a lateral part and a longitudinal part fitted on an outer wall of the lateral part of the first fitting tube, and the longitudinal part has a projection arranged on an inner wall of the longitudinal part and housed in one of the multiple defining recesses. The holder is mounted on a top of the lateral part of the second fitting tube.
Abstract:
A height adjustment mechanism for a chair armrest contains: an inner tube, an adjusting member, an outer tube, a driving block, a fixing member, and a resilient element. The inner tube includes a base, an accommodating groove, and an elongated hole. The adjusting member includes a guiding slot, two toothed racks, and a plurality of guide teeth, wherein each guide tooth has a first crown portion, a first root portion, and a first bottom face. The outer tube includes a support plate an orifice. The driving block includes a pressing portion, two flanges, and plural positioning teeth, wherein a number of the plural positioning teeth is less than that of the plurality of guide teeth. The fixing member includes a first segment and a second segment. The resilient element is fixed in the inner tube and includes a first end abutting against the driving block and the fixing member.
Abstract:
A height adjustment mechanism for a chair armrest contains: an inner tube, an adjusting member, an outer tube, a driving block, a fixing member, and a resilient element. The inner tube includes a base, an accommodating groove, and an elongated hole. The adjusting member includes a guiding slot, two toothed racks, and a plurality of guide teeth, wherein each guide tooth has a first crown portion, a first root portion, and a first bottom face. The outer tube includes a support plate an orifice. The driving block includes a pressing portion, two flanges, and plural positioning teeth, wherein a number of the plural positioning teeth is less than that of the plurality of guide teeth. The fixing member includes a first segment and a second segment. The resilient element is fixed in the inner tube and includes a first end abutting against the driving block and the fixing member.
Abstract:
A pixel structure includes a substrate, a scan line, a first data line, a second data line, a first active device, a second active device, a first pixel electrode, and a second pixel electrode. The substrate has a first unit area and a second unit area. The first pixel electrode is disposed in the first unit area and includes a first main portion and first branch portions extending from the first main portion to an edge of the first unit area. The second pixel electrode is disposed in the second unit area and includes a second main portion and second branch portions extending from the second main portion to an edge of the second unit area, wherein at least a part of the first branch portions and at least a part of the second branch portions are asymmetrically arranged at two sides of the second data line.