Abstract:
An organic light-emitting device including a transparent conducting oxide layer as a cathode and a method of manufacturing the organic light-emitting device. The organic light-emitting device includes an anode disposed on a substrate. An organic functional layer including at least an organic light-emitting layer is disposed on the anode. The transparent conducting oxide layer used as the cathode is disposed on the organic functional layer. The transparent conducting oxide layer cathode is formed by plasma-assisted thermal evaporation. A microcavity structure is not formed in the organic light-emitting device, thereby avoiding a luminance change and a color shift as a function of viewing angle.
Abstract:
An organic light emitting display includes an anode; an organic layer on the anode; and a cathode on the organic layer. The cathode includes a first region and a second region which are sequentially disposed on the organic layer in parallel. The first and second regions are formed by doping a metal oxide on an indium oxide matrix. The doping density of the metal oxide of the first region is greater than that of the second region, the metal oxide of the first region has a density gradient, and the density of the metal oxide in a boundary surface of the first and second regions is the same. An organic light emitting display according to the present invention can increase light emitting efficiency without using a resonance structure.
Abstract:
A thin film transistor includes a channel layer including an amorphous 12CaO.7Al2O3 (C12A7) and a flat panel display device including the same. According to the present invention, the amorphous channel layer can be formed at a low temperature using C12A7. The thin film transistor including the amorphous channel layer has excellent electron mobility.
Abstract:
An organic light emitting device is provided that includes: an anode including an anode material and for injecting holes; an organic layer including a light emitting layer on the anode; and a cathode on the organic layer and through which light emitted from the light emitting layer passes, wherein the cathode includes: a buffer layer, a metal oxide layer including a metal oxide, and a metal layer including a metal having an absolute work function value lower than an absolute work function value of the anode material and coupled to the buffer layer and the metal oxide layer.
Abstract:
A method of manufacturing an organic light-emitting device, the method including: forming an anode; forming an intermediate layer comprising an emission layer on the anode; and forming a cathode on the intermediate layer, wherein the forming of the cathode comprises thermally depositing indium or indium oxide, with at least one of a metal or a metal oxide in plasma generated in a chamber to form a transparent conductive layer of indium oxide doped with the at least one of the metal or the metal oxide.
Abstract:
An organic light-emitting device including a transparent conducting oxide layer as a cathode and a method of manufacturing the organic light-emitting device. The organic light-emitting device includes an anode disposed on a substrate. An organic functional layer including at least an organic light-emitting layer is disposed on the anode. The transparent conducting oxide layer used as the cathode is disposed on the organic functional layer. The transparent conducting oxide layer cathode is formed by plasma-assisted thermal evaporation. A microcavity structure is not formed in the organic light-emitting device, thereby avoiding a luminance change and a color shift as a function of viewing angle.
Abstract:
A polarizer adapted to improve contrast and visibility of a display device, a method of manufacturing the polarizer, and a flat panel display device including the polarizer. In one embodiment, the polarizer includes a base and a plurality of grids disposed in a stripe pattern on the base. Here, the grids are separated from each other and formed of metal-containing graphite.
Abstract:
Provided is a curtain-suspension-type power-generating apparatus in which generator bodies, i.e. turbines using the force of the wind, are vertically and densely suspended from upper and lower wire ropes connected in parallel, such that the generator bodies rotate along the upper and lower wire ropes. The curtain-suspension-type power-generating apparatus comprises: a plurality of curved turbine blades which rotate by means of the wind blowing from the outside; a generator coupled in a straight line to the center of the turbine blades; an upper wire rope and a lower wire rope connected between the upper ends or lower ends of steel towers such that the upper wire rope and the lower wire rope are arranged in parallel; and a plurality of generator bodies densely installed at the upper and lower wire ropes arranged in parallel. The number of the wire ropes having the plurality of generator bodies installed thereon may be one, two, three, or more connected together so as to form a radial shape. The thus-configured curtain-suspension-type power-generating apparatus may easily generate electrical energy in any place in which there is wind, and may mass-produce electrical energy.
Abstract:
In order to improve durability, a display apparatus includes a substrate; an encapsulation substrate facing the substrate; a display unit disposed between the substrate and the encapsulation substrate; a sealing unit disposed between the substrate and the encapsulation substrate so as to bond the substrate and the encapsulation substrate and spaced from the display unit; and a protective member formed over at least one surface among surfaces of the substrate and the encapsulation substrate, except surfaces facing the display unit. The protective member includes a base, a plurality of capsules comprising monomers, and a catalyst inducing polymerization of the monomers.
Abstract:
An organic light emitting diode device includes a first electrode, a second electrode, and an emission layer disposed between the first and second electrodes. The first electrode includes a first layer and a second layer. The first layer includes ytterbium (Yb), samarium (Sm), lanthanum (La), yttrium (Y), calcium (Ca), strontium (Sr), cesium (Cs), ruthenium (Ru), barium (Ba), or a combination thereof and having a thickness ranging from about 40 to 200 Å. The second layer includes silver (Ag), aluminum (Al), copper (Cu), chromium (Cr), or a combination thereof and having a thickness ranging from about 100 to 250 Å.