Abstract:
A pressure sensitive adhesive article is described comprising a pressure sensitive adhesive in contact with the release layer. The release layer comprises a thermoplastic polymer and a block copolymer additive having the general structure: A[LB]n wherein A is a polyorganosiloxane block, L is a covalent bond or a divalent linking group B is independently a C16-C70 alkyl group, and n is at least 1. In other embodiments, compositions are described comprising a thermoplastic polymer the described block copolymer additive; as well as methods of making a release composition.
Abstract:
A center-fed single cavity slot die (100) for coating particulate suspensions without creating the coating defect known as center banding. The die has a flow obstruction device (109) located in the die cavity (105) in a position such that the flow obstruction device blocks undisturbed straight-line flow of coating composition from the feed inlet to the die coating slot. Also, a coating process that employs the disclosed coating die. Types, shapes, sizes, and compositions of particles that may be used, and viscoities and particle concentrations of the coating composition which may be used.
Abstract:
The present disclosure describes a looped pile static reduction blanket or cloth, an apparatus including the looped pile static reduction blanket, and a technique to neutralize static and static patterns from a polymeric film surface during processing, to enable higher speeds and fewer defects during web transport and subsequent processing of wound film rolls, an apparatus including the looped pile static reduction cloth, and a technique to neutralize static from a polymeric shaped part during processing, to enable fewer defects. The looped pile static reduction blanket includes a static reduction engagement fabric that is resilient and can facilitate discharge of static from a web to ground before, during, and after contact with a charged web.
Abstract:
The present method comprises providing a flexible web substrate (e.g., polymeric flexible web substrates) that forms at least part of a component of a device, coating so as to wet-out on and cover all or a substantial portion of a major surface on one side or both sides of the flexible web substrate with flowable polymeric material, while the flexible web substrate is moving in a down-web direction, and solidifying the polymeric material so as to form one cleaning layer on the major surface of one side or both sides of the flexible web substrate. The present invention can be utilized in a continuous in-line manufacturing process. In applications of the present invention where the flexible web substrate will not form a component of a device, the present invention broadly provides a method for cleaning particles from a flexible web of indefinite length. Each cleaning layer forms a substantially adhesive bond to the major surface that is readily removable without damaging or leaving a substantial residue of cleaning layer material on the major surface. A substantial number of the particles that were on this major surface are captured by and removable with the cleaning layer.