Abstract:
A system for delivering an implant including a handle, a trigger, and an actuation assembly. The actuation assembly can be configured to displace the outer tubular member in the proximal direction a distance (d) relative to the handle and to separately move the inner shaft member distally a distance (x) relative to the handle upon deployment of the trigger from a first position to a second position, and move the inner shaft member proximally a distance (y) relative to the handle with no displacement of the outer tubular member upon return of the trigger from the second position to the first position.
Abstract:
A system and method for simulating an anatomical access site includes a model assembly selectively disposed within a carrying structure, the model assembly configured to present an anatomical simulant. The model assembly includes a liquid storage container configured to selectively hold a liquid, a pump configured to move the liquid at least around the anatomical simulant, and a model support assembly configured to support the anatomical simulant.
Abstract:
A teaching aid has visual indicia thereon simulating the circulatory system of an organism. The teaching aid includes (i) a template having visual indicia thereon simulating the circulatory system of an organism; and (ii) a plurality of connectors for connecting a medical device to the template. The template comprises (a) a base, and (b) visual indicia on the base, simulating the circulatory system of an organism.
Abstract:
A system for delivering an implant including a handle, a trigger, and an actuation assembly. The actuation assembly can include a planet carrier, at least one planet gear operatively coupled to the planet carrier, a sun gear shaft operatively engaged with the planet gear, a ring gear operatively engaged with the planet gear, a first clutch driver, and a second clutch driver. The actuation assembly can be configured to displace the outer tubular member in the proximal direction a distance (d) relative to the handle and to separately move the inner shaft member distally a distance (x) relative to the handle upon deployment of the trigger from a first position to a second position, and move the inner shaft member proximally a distance (y) relative to the handle with no displacement of the outer tubular member upon return of the trigger from the second position to the first position.
Abstract:
Systems and methods for uniformly expanding and heat setting medical devices. One method can include expanding a medical device by advancing the medical device over a preheated expander, the medical device being uniformly expanded as the medical device is advanced over the preheated expander; and heat setting the expanded medical device while the medical device is positioned over the expander, the preheated expander being maintained at a predetermined heat-setting temperature. The preheated expander can be positioned within a thermal chamber that maintains the preheated expander at the predetermined heat-setting temperature. The medical device can be physically separated from the preheated expander when the medical device is positioned over the expander and can be comprised of a shape-memory material. The preheated expander can remain heated during the expansion and heat setting of a plurality of medical devices.
Abstract:
Catheter including a pressure chamber defined by proximal and distal seals and inner and outer tubular members. An actuator member, moveable between first and second positions, is disposed within the pressure chamber. Fluid introduced into the pressure chamber applies a force on the actuator member to move the actuator member toward the second position. A lock mechanism, disposed between inner and outer tubular members, includes a latch having an engaged condition preventing movement of the outer tubular member relative the inner member and a disengaged condition allowing movement the outer member. The latch is shifted to the disengaged condition when the actuator member is moved to the second position. With the actuator member in the second position and the latch in the disengaged condition, fluid introduced through the fluid flow port and into the pressure chamber applies a force on the proximal seal to urge the outer tubular member proximally.
Abstract:
A system for delivering an implant including a handle, a trigger, and an actuation assembly. The actuation assembly can include a planet carrier, at least one planet gear operatively coupled to the planet carrier, a sun gear shaft operatively engaged with the planet gear, a ring gear operatively engaged with the planet gear, a first clutch driver, and a second clutch driver. The actuation assembly can be configured to displace the outer tubular member in the proximal direction a distance (d) relative to the handle and to separately move the inner shaft member distally a distance (x) relative to the handle upon deployment of the trigger from a first position to a second position, and move the inner shaft member proximally a distance (y) relative to the handle with no displacement of the outer tubular member upon return of the trigger from the second position to the first position.
Abstract:
A system for delivering an implant including a handle, a trigger, and an actuation assembly. The actuation assembly can include a planet carrier, at least one planet gear operatively coupled to the planet carrier, a sun gear shaft operatively engaged with the planet gear, a ring gear operatively engaged with the planet gear, a first clutch driver, and a second clutch driver. The actuation assembly can be configured to displace the outer tubular member in the proximal direction a distance (d) relative to the handle and to separately move the inner shaft member distally a distance (x) relative to the handle upon deployment of the trigger from a first position to a second position, and move the inner shaft member proximally a distance (y) relative to the handle with no displacement of the outer tubular member upon return of the trigger from the second position to the first position.
Abstract:
Catheter for delivery of a medical device such as a stent or filter includes an inner tubular member and an outer tubular member movable relative to the inner tubular member. The outer tubular member is disposed at the distal end of the inner tubular member. The inner tubular member includes a fluid lumen defined therein, the fluid lumen having a fluid flow port directed to the exterior surface of the inner tubular member. A pressure chamber is defined by the inner tubular member, the outer tubular member, a proximal seal and a distal seal, and is in fluid communication with the fluid flow port, wherein fluid introduced through the fluid flow port and into the pressure chamber applies a force on the proximal seal to move the outer tubular member in a proximal direction allowing the medical device constrained by the outer tubular member to be released.