Abstract:
A method of tuning a fiber optic connector includes: assembling the fiber optic connector to a partially assembled state; tuning the fiber optic connector in the partially assembled state; assembling the fiber optic connector to an assembled state; and tuning the fiber optic connector in the assembled state.
Abstract:
A fiber optic alignment device includes a first and a second alignment block and a first and a second gel block. A fiber passage extends from a first end to a second end of the fiber optic alignment device. The fiber passage is adapted to receive a first optical fiber through the first end and a second optical fiber through the second end. An intermediate portion of the fiber passage is positioned between the first and the second ends. The intermediate portion is adapted to align the first and the second optical fibers between the first and the second alignment blocks. A first portion of the fiber passage is positioned between the first end and the intermediate portion of the fiber passage. The first portion extends between the first alignment block and the first gel block. A second portion of the fiber passage is positioned between the second end and the intermediate portion of the fiber passage. The second portion extends between the second alignment block and the second gel block. End portions of the first and the second optical fibers may be cleaned when slid between the alignment blocks and the gel blocks. The fiber passage may include an undulating portion.
Abstract:
A fiber optic telecommunications device includes a frame defining a right vertical support and a left vertical support. A chassis is mounted to the right and left vertical supports, wherein the chassis is configured to pivot about a pivot axis that is defined by one of the right and left vertical supports. A plurality of modules are mounted on the chassis, each of the modules slidable on the chassis along a direction extending between the right and left vertical supports, wherein the chassis is configured to pivot about a plane parallel to the sliding direction of the modules, each module defining fiber optic connection locations.
Abstract:
A packaging arrangement for telecommunications cabling is disclosed herein. The packaging arrangement includes a modular spool assembly defined by a first flange, an opposing second flange, and a spool hub separating the first flange from the second flange, wherein a telecommunications cable may be wound between the first and second flanges. Each flange defines a first cable contact side, a second cable-end storage side, and an opening allowing the telecommunications cable to pass from the first side to the second side, the second side defining a storage compartment for storing an end of the telecommunications cable passing through the opening in the flange.
Abstract:
A fiber optic alignment device includes a first and a second alignment block and a first and a second gel block. A fiber passage extends from a first end to a second end of the fiber optic alignment device. The fiber passage is adapted to receive a first optical fiber through the first end and a second optical fiber through the second end. An intermediate portion of the fiber passage is positioned between the first and the second ends. The intermediate portion is adapted to align the first and the second optical fibers between the first and the second alignment blocks. A first portion of the fiber passage is positioned between the first end and the intermediate portion of the fiber passage. The first portion extends between the first alignment block and the first gel block. A second portion of the fiber passage is positioned between the second end and the intermediate portion of the fiber passage. The second portion extends between the second alignment block and the second gel block. End portions of the first and the second optical fibers may be cleaned when slid between the alignment blocks and the gel blocks. The fiber passage may include an undulating portion.
Abstract:
An optical fiber connection system includes a first and a second optical fiber, each with end portions that are terminated by a first and a second fiber optic connector, respectively. A fiber optic adapter connects the first and the second fiber optic connectors. The fiber optic adapter includes a housing and a fiber alignment apparatus. The fiber alignment apparatus includes V-blocks and gel blocks. Each of the fiber optic connectors includes a connector housing and a sheath. The end portions of the optical fibers are positioned beyond distal ends of the respective connector housings. The sheath is slidably connected to the connector housing and slides between an extended configuration and a retracted configuration. The sheath covers the end portion of the respective optical fiber when the sheath is at the extended configuration and exposes the end portion when at the retracted configuration. The end portions of the optical fibers are cleaned when slid between the V-blocks and the gel blocks.
Abstract:
A connection system includes an optical connector assembly; and an optical plug. The connector assembly includes a stack of gel-groove assemblies and a spring assembly mounted within a housing. Each of the gel-groove assemblies includes a first gel block at a first axial end, a second gel block at a second axial end, and a fiber mating region between the first and second gel blocks. The optical plug including sub-modules over-molded over arrays (e.g., ribbons) of the optical fibers. Each sub-module defines notches for receiving latches of the spring assembly when the optical plug is coupled to the first axial end of the optical adapter. Bare optical fibers extend from the plug, pass through the first axial gel block, and enter the fiber mating region when the plug is coupled to the adapter.
Abstract:
A connection system includes an optical connector assembly; and an optical plug. The connector assembly includes a stack of gel-groove assemblies and a spring assembly mounted within a housing. Each of the gel-groove assemblies includes a first gel block at a first axial end, a second gel block at a second axial end, and a fiber mating region between the first and second gel blocks. The optical plug including sub-modules over-molded over arrays (e.g., ribbons) of the optical fibers. Each sub-module defines notches for receiving latches of the spring assembly when the optical plug is coupled to the first axial end of the optical adapter. Bare optical fibers extend from the plug, pass through the first axial gel block, and enter the fiber mating region when the plug is coupled to the adapter.
Abstract:
A tool set for terminating an optical fiber with a fiber optic connector includes a crimping tool and a polishing tool. The crimping tool includes a locating feature for locating a housing of the fiber optic connector, a stop for locating an end of an optical fiber relative to the housing, and at least one anvil for crimping a crimp of the fiber optic connector to secure a position of the optical fiber relative to the housing. The polishing tool includes a locating feature for locating the housing and thereby locating the end of the optical fiber and a seat for activating a compression member of the fiber optic connector thereby securing the end of the optical fiber to the polishing tool.
Abstract:
A method of tuning a fiber optic connector includes: assembling the fiber optic connector to a partially assembled state; tuning the fiber optic connector in the partially assembled state; assembling the fiber optic connector to an assembled state; and tuning the fiber optic connector in the assembled state.