Abstract:
Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
Abstract:
Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
Abstract:
Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
Abstract:
Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
Abstract:
Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
Abstract:
Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
Abstract:
Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
Abstract:
Various embodiments for detecting and rejecting false, unintended rotations of rotary inputs of electronic devices are disclosed herein. In one example, an electronic device is provided with an optical detector that measures the distance between the electronic device and the wearer's forearm or hand, and when the distance is smaller than a threshold distance, the turns of the rotary input are false, unintended turns. In another example, a crown of a rotary input includes a plurality of capacitive sensors that detects the presence of a wearer's finger, which when absent, the turns of the rotary input are false turns. In another example, deflections or positions of a shaft of the rotary input are measured and if the deflections/positions indicate an upward force on the rotary input (which are likely caused by the wearer's forearm or hand), the turns of the rotary input are false turns. Other embodiments are described herein.
Abstract:
A speaker or microphone module includes an acoustic membrane and at least one pressure vent. The pressure vent equalizes barometric pressure on a first side of the acoustic membrane with barometric pressure on a second side of the acoustic membrane. Further, the pressure vent is located in an acoustic path of the speaker or microphone module. In this way, differences between barometric pressures on the different sides of the acoustic membrane may not hinder movement of the acoustic membrane. In one or more implementations, the pressure vent may be acoustically opaque. As the pressure vent is located in the acoustic path of the speaker or microphone module, being acoustically opaque may ensure that the pressure vent itself does not interfere with the operation of the speaker or microphone module.
Abstract:
A ceramic material having an electronic component embedded therein, and more particularly to a sapphire surface having an electrically energized component embedded within. In some embodiments, the sapphire surface may take the form of a portion of a housing for an electronic device. Since sapphire may be substantially transparent, it may form a cover glass for a display within or forming part of the electronic device, as one example. The cover glass may be bonded, affixed, or otherwise attached to a remainder of the housing, thereby forming an enclosure for the electronic device.